
Journal of Network and Innovative Computing.
ISSN 2160-2174 Volume 3 (2015) pp. 047–059
c⃝ MIR Labs, www.mirlabs.net/jnic/index.html

A novel approach to the design and implementation
of mutation operators for Object-Oriented

programming language
Qianqian Wang1, Hirohide Haga2

1IBM China,
2F, Building 10, 399 Keyuan, Zhang Jiang High Tech Park, 201203, Shanghai, China

wangqqw@cn.ibm.com

2Faculty of Science and Engineering, Doshisha University,
1-3, Miyakotani, Tatara Kyotanabe, 610-0321, Japan

hhaga@mail.doshisha.ac.jp

Abstract: Software testing allows programmers to determine
and guarantee the quality of software system. It is one of the
essential activities in software development process. Mutation
analysis is a branch of software testing. It is classified as a fault-
based software testing technology. Unlike other software testing
technologies, mutation analysis assesses the quality of software
test cases and therefore improves the efficiency of software test-
ing by measuring and improving the quality of test cases set.
Mutation analysis works by generating mutants, which describe
the faults that may occur in the software programs. Mutants are
generated by applying mutation operators on original software
program. Mutation operator is a rule that specifies the syntactic
variations of strings.
There have been several works about mutation analysis support
system for conventional languages such as C and FORTRAN.
However, there are a few for object-oriented languages such as
C++ and Java. This article aims to propose a novel approach to
design and implement mutation operators for object-oriented
programming language. The essential idea of proposed method
is the usage of JavaML as the intermediate representation to im-
plement mutation operators: it first converts the original pro-
gram into JavaML document; then implements mutation op-
erator for JavaML document and gets the mutated JavaML
document with the help of DOM – a tool to process JavaML
document– finally it converts the mutated JavaML document
into mutant program. Typical six mutation operators are im-
plemented. Implementation detail will be given in this article.
Keywords: Software Testing, Mutation Analysis, Object Oriented
Langauge, XML

I. Introduction

Software testing is one of the most important activities in
software development process[1]. It observes the execution
of programs to validate whether it behaves as intended and
produces the expected results. Mutation analysis is a fault-
based testing technology, which assesses the quality of test
cases set and therefore improves the quality of programs[2,

3]. A high-quality test cases set can detect more possible
faults in software and guarantee the quality of software.
In mutation analysis, mutation operators are used to generate
mutated programs (hereinafter called mutants) from original
program; test cases set is applied on both original program
and mutants to get their behaviors and results. Then the be-
haviors and results are observed carefully to evaluate and im-
prove the quality of test cases set.
The purpose of this article is to propose a novel approach
to the design and implementation of mutation operators for
Object-Oriented programming language[4]. The essential
idea of this method is the usage of JavaML (Java Markup
Language)[5] as an intermediate representation to implement
mutation operator. Proposed method first converts the origi-
nal source program into JavaML document. Then it applies
mutation operators to converted JavaML document and gets
the mutated JavaML document with the help of DOM (Doc-
ument Object Model)[6, 7], – a tool to process JavaML doc-
ument. Finally it makes reverse conversion from the mutated
JavaML document into mutant program.
In this article, OO specific six mutation operators includ-
ing AMC (access modifier change), SKD (”super” keyword
deletion), SMD (static modifier deletion), TKD (deletion of
“ this” keyword), PCD (parent constructor deletion) and
OMD (overloading method deletion) are implemented.
Section II introduces the concept of software testing, and its
necessary components; test cases and coverage. Concept of
mutation analysis is also introduced in this section. Section
III describes the Extensible Markup Language (XML) and
one of its special forms JavaML, which is used for repre-
senting Java source code in this article. A method called
DOM (Document Object Model) is also introduced in this
section to processing XML documents. Finally a novel ap-
proach to implement mutation operator with using JavaML is
proposed. In section IV, which is the main part of this article,
we will describe the details of the design and implementation
of six selected mutation operators

MIR Labs, USA

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 48

II. Software testing and mutation analysis

A. Software Testing

The purpose of software testing is to guarantee that program
is developed according to the specification. The program
could be executed correctly under all possible circumstance.
Software testing provides objective view of the correctness,
completeness and quality for software products. It is an es-
sential technology for all software developments
Software testing can be processed through a number of ways;
and it is performed using testing cases. Therefore, test case
is one of the main components of software testing activity.
Before introducing the concept of test case, the following
definitions are necessary to be acquired [2]:

1. Test Case Value: the input values necessary to com-
plete some execution of software under test.

2. Prefix Values: any inputs necessary to put the software
into the appropriate state to receive the test case values.

3. Postfix Values: any inputs that need to be sent to the
software after the test case values are sent.

A test case is composed of the test case value, expected re-
sults, prefix values, and postfix values necessary for a com-
plete execution and evaluation of the software under test. A
test cases set is simply a set of test cases.
The number of potential inputs for most programs is too large
to be effectively covered. Thinking about a C parser, the
number of the potential inputs to the C parser is a feasible
sequence of program fragments of C programming language,
and thus it is infinite and could not be explicitly enumerated.
Therefore, we have to consider how to reduce the number of
test cases without reducing the quality of software. One of
the most popular methods to resolve this problem is the us-
age of “coverage measure”. Coverage measure is a measure
used to describe the degree to which the source code of pro-
gram is tested by a particular test cases set. We will provide
the formal definition of coverage and related terminology as
follow:

• Coverage: given a set of test requirements TR for a cov-
erage criterion C, a test cases set T satisfies C if and only
if for every test requirement tr in TR, at least one test t
in T exists such that t satisfies tr.

• Coverage criterion: a coverage criterion is a rule or
collection of rules that impose test requirements on a
test cases set.

Since we could not test all the possible test cases, coverage
is used to evaluate the effectiveness and performance of test
cases set [3]. Higher coverage of test cases set could be more
efficient and have higher performance in software testing.

B. Mutation Analysis

Mutation analysis is a branch of software testing. Its purpose
is to measure and improve the quality of test cases set. Muta-
tion analysis is a fault-based software testing technology[3].
Unlike other software testing techniques, it measures the ef-
fectiveness and performance of test cases, and helps increase

the coverage of test cases set. Mutation analysis is developed
under two hypotheses[8].

• Competent programmer hypothesis: software pro-
grams are often different from the correct version of
the programs in several ways. And most programs are
nearly correct.

• Coupling effect hypothesis: complex fault of program
is made up of simple faults.

Mutation analysis is composed of three parts: “original
code”, “mutation operator,” and “mutant.” The original code
is a string in the program that is syntactically correct. In mu-
tation analysis, mutation operator is applied on original code
to get mutant.

C. Mutants

Mutant is also a program which is generated from the origi-
nal program to be tested; it is the result of one application of a
mutation operator to the original program. By applying mu-
tation operator, original program is syntactically modified.
Mutant is said to be killed if and only if the execution of at
least one test case on the original program is different from
the result of on the mutant.
There are mainly three kinds of mutant in mutation analysis:

• Killed mutant: a mutant that is killed by at least one
test case.

• Still-live mutant: a mutant whose behavior is identical
to original code for all prepared test cases. If we add
further test case, still-live mutant may be killed.

• Equivalent mutant: a mutant which is functionally
equivalent to the original program. The equivalent mu-
tants produce the same result as the original program for
any test cases. Therefore, no test case can kill them.

Mutation score is the percentage of non-equivalent mutants
killed by the test cases set. Each mutant is generated by ap-
plying one mutation operator on the original program once.

D. Mutation Operators

Mutation operator is a rule that specifies syntactic variations
of strings generated from a grammar. Mutation operators
should be carefully designed for different programming lan-
guage because of the different features of languages.
Taking mutation operator AOR (Arithmetic Operator Re-
placement) as an example, each occurrence of one of the
arithmetic operators (+, -, *, /) is replaced by other
arithmetic operators. Following is an example of original
program and its mutants.

Original Mutants
x = a − b

x = a + b −→ x = a ∗ b
x = a / b

The AOR operator is applied to the original code and three
mutants are generated. There are common mutation oper-
ators which fit to various kinds of programming languages
such as AOR. But some mutation operators are language-
specific. In order to design mutation operators for specific
languages, we have to consider the features of target lan-
guage.

49 Wang and Haga

E. Process of Mutation Analysis

Figure. 1: Process of mutation analysis

Figure 1 describes the principle steps of mutation analysis.
There are several steps in mutation analysis. They are:

1. Prepare original program P to be tested.

2. Prepare test cases set T. Each test case tj(1 ≤ j ≤ N)
is included in T.

3. Generate mutants mi(1 ≤ i ≤ K). Generated mutants
are included in mutants set M.

4. Eliminate equivalent mutants from M.

5. Execute P using test case tj and get the result Rj(P).

6. Execute mi using test case tj and get the result Rj(mi).

7. When Rj(P) ̸= Rj(mi), mi is marked as killed mutant.

8. If ∀j(Rj(mi) = Rj(P)), mi is marked as still-live mu-
tant.

9. Mutation score MS will be computed using following
formulae:

MS =
of killed mutants

of all mutants−# equivalent mutants

This MS indicates the quality or effectiveness of test cases
set T. When almost all mutants are killed by test cases set T,
MS ∼= 1 and lower MS means that there are relatively many
still-live mutants. There are three possibilities of still-live
mutants.

a) mutated code is not executed for all test cases tj ,

b) mutated code generates identical result of for specific
test case,

c) mutant is an equivalent mutant.

In case a) and b), further test cases must be added to the
test cases set T. Therefore, by using MS, test engineers can
estimate the quality or effectiveness of test cases set T.

III. Object-oriented Programming

A. Brief Introduction of Object Oriented Programming

Object-oriented programming (OOP) is a programming con-
cept that enables the programmer to associate a set of proce-
dures with each type of data structure[4]. This data structure
is called ‘Object’. An object is considered as an item that
can have several attributes and could perform a set of related
activities, which is called as ”method.”
A class in OOP is simply a representation of a type of object.
It is the “blue print” from which the individual instance ob-
jects are created. Class is composed of three things: a name,
attributes, and methods. Following is an example of class
definition.

Name Student

Attributes Name: String

Age: int

Methods void Students()

int getAge()

Three features of object-oriented programming related to de-
sign mutation operators for OOP are as follow:

(1) Encapsulation: Encapsulation is the mechanism under
which the details of a class are kept hidden from its user.
The advantage of encapsulation comes when the imple-
mentation of the class changes but the interface remains
the same.

(2) Inheritance: Inheritance is the mechanism under which
specific classes are made from another, sometimes more
general ones. The child or derived class inherits all at-
tributes and methods of its parent or base class, and the
child class can add attributes and methods of its own.

(3) Polymorphism: Polymorphism is a mechanism under
which it is possible to assign different meaning or us-
age to an entity in different contexts. The entity can be
a variable, method or object. Polymorphism enables a
programmer to make use of an entity in several differ-
ent forms without affecting the original identity of the
entity.

B. Mutation Operators for OO Language

There are several proposals for the set of mutation operators
of OOP[9, 10]. In this article, we introduce mutation opera-
tors for OO language from two levels.

• Method level: Method level operators modify the ex-
pressions by inserting, replacing or deleting the primi-
tive operators. The method-level operators are usually
classified into six types: arithmetic operators, relation
operators, conditional operators, shift operators, logi-
cal operators, and assignment operators. Their brief de-
scriptions are shown in Table 1.

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 50

Table 1: Method-level Mutation Operators for OO Language

Type Operator Description
AOR Arithmetic Operator Replacement

Arithmetic AOI Arithmetic Operator Insertion
AOD Arithmetic Operator Deletion

Relation ROR Relational Operator Replacement
COR Conditional Operator Replacement

Conditional COI Conditional Operator Insertion
COD Conditionial Operator Deletion

Shift SOR Shift Operator Replacement
LOR Logical Operator Replacement

Logical LOI Logical Operator Insertion
LOD Logical Operator Deletion

Assignment ASR Assignment Operator Replacement

• Class level: The class-level operators make changes to
syntax by inserting, deleting, or modifying the expres-
sions in the object-oriented programs. Since this arti-
cle chooses Java as an example language, the class-level
mutation operators for Java programming language are
classified into four types with their descriptions in Table
2 They are encapsulation, inheritance, polymorphism,
and Java-specific.

IV. IST: Integrated Software Testing Environ-
ment

We are now developing the IST (Integrated Software Teating
Environment). IST is an integrated environment for software
testing activity. In IST, there is a program database which
contains programs to be tested. Several testing support tools
exist around this program database.
In program database, all programs to be tested are repre-
sented as XML form. This is mainly because of the flexibility
of XML form. XML form is represented in text. Therefore,
both machine and human can read and use it. XML form
can include structural information. This means that syntax
information can be embedded in XML form. Therefore, by
representing all programs in a XML form, tools surrounding
program database need not to parse the program when they
execute specific functions. Figure 2 represents the concep-
tual structure of IST.

Figure. 2: Conceptual Structure of IST

V. JavaML and Mutation Operators

A. XML – Extensible Markup Language

JavaML is one instance of XML (Extensible Markup Lan-
guage). XML is a markup language describing the structural
information of documents. It is a subset of SGML, the Stan-
dard Generalized Markup Language [9]. The XML language

Table 2: Class-level Mutation Operators for OO Language

Type Operator Description
Encapsulation AMC Access Modifier Change

HVD Hiding variable deletion
HVI Hiding variable insertion

OMDI Overriding method deletion
Inheritance OMM Overridden method moving

OMR Overridden method rename
SKI Super keyword insertion
SKD Super keyword deletion
PCDI Parent constructor deletion
ATC Actual type change
DTC Declared type change
PTC Parameter type change
PCI Type cast operator insertion

Polymorphism PCDP Type cast operator deletion
PCC Cast type change
RTC Reference type change
OMC Overload method change

OMCP Overloading method deletion
OAN Argument of overloading method change
JTI ”This” keyword insertion
JTD ”This” keyword deletion
JSI Static modifier insertion
JSD Static modifier deletion
VID Variable initialization deletion

Java-specfic DCD Default constructor deletion
EOA Reference assignment and content

assignment replacement
EOC Reference comparison and content

comparison replacement
EAM Access method change
EMM Modifier method change

is designed to represent the set of data in an easily under-
standable format both for machine and human being.
Arbitrary definitions of user-defined markup tags are allowed
in XML, and thus making XML more flexible to be adapted
for various application fields.

1) Syntax of XML

Figure 3 shows a simple XML document, which is sufficient
for introducing the syntax of XML document. XML docu-
ment consists of texts marked up with tags, which are en-
closed in angle braces

1 <?xml version=”1.0” encoding=”GB2312”?>
2 <MyProduct>
3 <Product>
4 <ProductId>123</ProductId>
5 <Price type”=”dollar>870</Price>
6 <Size>1</Size>
7 </Product>
8 <Product>
9 <ProductId>124</ProductId>

10 <Price type”=”dollar>200</Price>
11 <Size>4</Size>
12 </Product>
13 </MyProduct>

Figure. 3: An example of XML document

a) XML declaration: Line 1 in Figure 3 is an XML dec-
laration. It defines the version of XML and the char-
acter encoding used in the document. In this example,
the version of XML is ’1.0’ and the encoding type is
‘GB2312’.

51 Wang and Haga

<?xml version="1.0" encoding="GB2312"?>

b) Element: Elements in XML document have opening
and closing tags with same name. Line 2 of this example
is the root element of this XML document. It encloses
all the other elements.

<MyProduct>……</MyProduct>

Each XML document contains only one root element,
all elements could have child elements or sub elements.
Figure 4 shows the relationship of all elements. In the

1 <root>
2 <child>
3 <subchild>.....</subchild>
4 </child>
5 </root>

Figure. 4: Elements of XML document

example shown in Figure 3, the element enclosed by
the tag <Product> and </Product> is the child
element of the root element of this XML document;
<ProductId>, <Price>, and <Size> are also the
sub-children of the child element <Product>. Shortly
saying, XML has a recursive structure.

1. Attribute: XML elements may have attributes in the
starting tag. These attributes provide additional in-
formation of elements. Each attribute is described as
"name=value" pairs. In the above example, the el-
ement <Price> has attribute named "type" and its
value is "dollar", which describes the currency unit.

<Price type="dollar">870</Price>

2) Processing XML documents with DOM

Document Object Model (DOM) defines a standard model
for accessing documents like HTML and XML[6] . DOM is
divided into three independent parts:

a) Core DOM – standard model for any structured docu-
ment

b) XML DOM – standard model for XML document

c) HTML DOM – standard model for HTML document

　　 XML DOM defines the objects and properties of all
XML elements, and the methods (interfaces) to access them.

3) DOM node and node tree

In XML DOM, everything from an XML document is re-
garded as node:

Entire XML document ←→ Document node
XML element ←→ Element node

Text content of XML element ←→ Text node
Attribute ←→ Attribute node

Comment ←→ Comment node

Figure. 5: Relationship of nodes

The relationship between each type of node is described in
Figure 5:
The XML DOM represents the entire XML document as a
tree-like data structure. This structure is suitable for process-
ing by programs. Figure 6 is the DOM node tree representa-
tion of XML example document in Figure 3.

Figure. 6: DOM tree

4) DOM methods

DOM offers many methods (interfaces) to process XML
document[7]; methods listed in Table 3 is most commonly
used to processing XML document.
With the methods in Table 3, we could get the value of node,
change, remove, replace, create and add nodes in the XML
document.

B. JavaML

JavaML is an XML document for describing Java program-
ming language. It provides a complete self-describing rep-
resentation of Java source code in XML[6]. In our research,
the converter‘ JJmlt.jar’[11] is applied to convert Java
source code into JavaML. Figure. 7 is a sample Java source
code and Figure.8 is a corresponding JavaML representation
generated by JJmlt.jar.
JavaML can represent the syntactic structure of Java source
code directly by tags in XML document.
As JavaML is an XML document, it inherits all advantages
from general XML document: it is easy to be parsed, and
could be processed by plentiful tools.
The key point of our approach is to realize mutation operators
in the domain of JavaML document rather than Java source

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 52

Table 3: Commonly used DOM methods

Method Description
loadXML Load the DOM tree of XML document

into memory.
getElementsByTagName Returns a collection of elements that

have the specified name.
getAttribute Gets the value of the attribute.
getAttributeNode Gets the attribute node.
createAttribute Creates a new attribute with the

specified name.
removeAttribute Removes or replaces the named

attribute.
setAttribute Sets the value of the named attribute.
item(IXMLDOMNodeList) Allows random access to individual

nodes within the collection.
createNode Creates a node using the supplied type,

name, and namespace.
createTextNode Creates a text node that contains the

supplied data.
getNodeName Returns the name of a node
hasChildNodes Provides a fast way to determine

whether a node has children.
appendChild Appends a new child node as the last

child of the node.
firstChild Returns the first child of the element
lastChild Returns the last child of the element
removeChild Removes the specified child node from

the list of children and returns it.

1 package com.wqq.java.examples;
2 import com.wqq.example.Parent;
3
4 public class Child extends Parent{
5 String name;
6 }

Figure. 7: Sample Java Source Code

code. We first get the corresponding JavaML document of
the Java source code by using converter “JJmlt.”[11] Then we
apply mutation operators on JavaML document and get the
mutated JavaML document. Finally the conversion from the
mutated JavaML to Java source code will be executed. The
converted Java source code is the desired mutant. To show
this approach intuitively, we draw the schematic illustration
in Figure. 9.

VI. Design and Implementing Mutation Oper-
ators on JavaML

Six operators are selected primarily to be implemented to
verify the feasibility of proposed approach. Table 4 shows
all the mutation operators explained in our experimental im-
plementation.

Table 4: Experimentally implemented mutation operators
Mutation Operator Brief Description

AMC Access modifier change
SKD Deletion of ’super keyword
SMD Static modifier deletion
TKD Deletion of ’this’ keyword
PCD Parent constructor deletion
OMD Overload method deletion

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <java−source−program>
3 <java−class−file name=”testttt.java”>
4 <package−decl name=”com.wqq.example”/>
5 <import module=”com.wqq.example.Parent”/>
6 <class name=”Child” visible=”public”>
7 <superclass name=”Parent”/>
8 <field name=”name”>
9 <type name=”String”/>

10 </field>
11 </class>
12 </java−class−file>
13 </java−source−program>

Figure. 8: Corresponding JavaML representation

Figure. 9: Schematic illustration of proposed method

A. Implementing AMC Operator

Mutation operator AMC (Access Modifier Change) is de-
signed to test the encapsulation feature in OO programming
language.
By changing the access level for each instance variable and
method to other access levels, mutation operator AMC helps
software testers ensure the correctness of accessibility. The
generated mutant would be killed only if the new access level
denies access to another class or allows access that causes
name conflict. Following is an example of original and its
mutated codes.

Original code Mutant
public int x private int x;

protected int x;

There are mainly three kinds of access modifier in Java. They
are public, private and protected. These modifiers
are used to set the access level for variables, methods, classes
and constructors. Since the access modifier of constructor is
always public, we only considers about that of methods
other than constructor, variables, and classes.
The original code of Java to be mutated and its corresponding
JavaML are as follows:

Original code Corresponding JavaML
<field name="x" visible="public">

public int x <type name="int" primitive="true"/>

</field>

<method name="nextLine"

private void visible="private" id="…">

nextLine() ...

</method>

The AMC operator could be implemented by editing the
value of attribute‘ visible ’in node tag <field> and
<method>. Figure 10 is a flowchart of AMC implementa-
tion.
By using DOM, we can edit XML document freely. DOM is
applied to access the node and attribute in XML document.
The core part of source code of this implementation is as

53 Wang and Haga

Figure. 10: Flowchart of AMC

follow. Firstly, XML document is loaded by using the code
shown below.

1 private DocumentBuilderFactory dbf;
2 private DocumentBuilder db;
3 private Document doc;
4 private Element element;
5 try{
6 db=dbf.newDocumentBuilder();
7 doc=db.parse(inputFileName);
8 root = doc.getDocumentElement();
9 }

10 catch(ParserConfigurationException e)
11 {e.printStackTrace();}
12 catch(SAXException e)
13 {e.printStackTrace();}
14 catch(IOException e)
15 {e.printStackTrace();}

With the codes of
1 NodeList nl = doc.getElementsByTagName(tagname);
2 int numOftag = nl.getLength();

the main program could get the node list with a given tag
name.
The following codes first check the existence of attribute
visible, and set the value of visible into the mutated
value.

1 element = (Element) nl.item(i−1);
2 Boolean hasAttribute=element.hasAttribute (”visible”);
3 if (hasAttr) {
4 element.setAttribute(”visible”, desName);
5 }

Steps shown above are essential steps of implementing AMC
operator. The original and mutated parts in JavaML are listed
in Figure 11.

B. Implementing SKD

Mutation operator SKD (”super” keyword deletion) is de-
signed to test the inheritance feature in OO programming lan-

Tag name Original JavaML Mutated JavaML

field <field name="x" <field name="x"

visible="public"> visible="public">

<method name="nLine" <method name="nLine"

method visible="private" visible="protected"

id="…"> id="…">

Figure. 11: Mutated result of AMC operator

guage. This operator deletes the ”super keyword so that
any references to the variable or method go to the overriding
method or variable. The mutant can only be killed by test
case that causes different behavior with the hiding variables
or the overriding methods.

Original code Mutant
super.name = name1; name = name1;

The keyword super is referencing variable that is defined
at the immediate parent class object. The keyword super is
used to refer immediate parent class and/or instance variable
and to invoke immediate parent class method.
In Java programs, there are five cases, under which the SKD
operator could be applied:

1. Subclass has the member variable with same name of its
immediate super class.

2. Subclass does not have the member variable with same
name of its immediate super class.

3. Subclass has overridden method. The subclass invokes
the super method within the overridden method.

4. Subclass overrides the method, and invokes the super
method in other method.

5. Subclass does not contain the overridden method, and
only invokes the super method.

In case 2) and 5), the mutant has no semantically difference
with the original program, thus it is determined as equivalent
mutant and will not be considered. In case 3), the mutant
has syntax error, thus it will also not be considered in our
implementation.
The original code of Java under mutation analysis and its cor-
responding JavaML are shown in Figure 12.
Mutation operator SKD is implemented by following the
steps in Figure 13.
DOM is applied to access the node and attribute in XML
document, the core source code of this implementation is as
follows. Following code shows the process of modifying the
child node of the parent node tag.

1. If the parent tag is <field-set>, the following
source code work to delete its child node <super> and
append new child node <var-set>.

1 if (nod.getFirstChild().getNodeName() == ”super”) {
2 Element newNode = doc.createElement(”var−set”);
3 newNode.setAttribute(”name”,attrName);
4 nod parent. removeChild (nod);
5 nod parent.appendChild(newNode);
6 }

2. If the parent tag is <field-access>, the following
codes would delete its child node <super> and append
new child node <var-ref>;

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 54

<assignment-expr op = "=">

<lvalue>

<field-set field = comName">

<super/>

super.comName=name; </field-set>

</lvalue>

<var-ref name = "name"

idref="com.wqq.javaex.Child:frm-1"/>

</assignment-expr>

System.out.println(<filed-access field="comName">

super.comName); <super>>

</filed-access>

<filed-access field="comName">

<send message="disName">

<target>

System.out.println(<super/>

super.disName); </target>

<arguments>

</arguments>

<send>

Figure. 12: Java source and corresponding JavaML for SKD

Figure. 13: Flowchart of SKD

1 if (nod.getFirstChild().getNodeName() == ”super”) {
2 Element newNode = doc.createElement(”var−ref”);
3 newNode.setAttribute(”name”,attrName);
4 nod parent.removeChild(nod);
5 nod parent.appendChild(newNode);
6 }

3. If the parent tag is <target>, this node will be
deleted.

1 if (nod.getFirstChild().getNodeName() == ”super”) {
2 nod parent.removeChild(nod);
3 }

C. Implementing SMD Operator

Mutation operator SMD(Static Modifier Deletion) is de-
signed to test the inheritance feature in OO programming
language. It removes the static modifier.
The static modifier is referencing variable that is defined at
the immediate parent class object. In Java, static is used
to modify methods, variables, blocks and nested classes.

1. Static method: Static methods are the specific methods
that do not need to access the state of object or only
use static fields. Original code and its corresponding
JavaML code is as follow:

Original code JavaML
static void g() { } <method name="go"

static="true" id="...">

Since the mutant has syntax error, there is no need
to use the static modifier on main method. The
method beside the mainmethod would be implemented
by three steps:

• Step1: determine if the method is main method
by checking the name of the method, go to step2
if the method is not main method.

55 Wang and Haga

• Step2: determine if the value of attribute static
in the node tag <method> is‘ true ’;

• Step3: delete the attribute static if its value is
true.

2. Static variable: Static variable in Java is associated
with the class rather than the objects of that class. Once
the class is initiated, the storage location of the static
variable is determined.

Original code JavaML
static int i <field name="i"

static="true">

The static modifier is represented as attribute
’static=true’ in node tag <field>, thus the
implementation could be realized by two steps:

• Step1: determine if the value of attribute ’static’
in the node tag <field> is ’true’;

• Step2: delete the attribute ’static’ if its value is
true.

3. Static block: Static block in a class is a block that will
be initiated when and only when the class is instanced.

Original Code JavaML
<staic-initializer>

static { <block>

System.out.println ...
"Value="+i);} <block>

</staic-initializer>

Since deleting the static modifier of block does not
cause any difference semantically, the mutant is re-
garded as equivalent mutant and need not to be imple-
mented.

4. Static Nested Block: A static nested class is one which
doesn’t implicitly have a reference to an instance of the
outer class.

Original Code JavaML
public static <class name="InnercCls"

class InnerCls{ <visible="public">

InnerCls() {} static="ture">

} ...

The implementation could be realized by two steps:

• Step1: determine if the value of attribute‘ static’
in the node tag <class> is ’true’;

• Step2: delete the attribute static if its value is
true.

As analyzed above, mutation operator SMD is implemented
following the steps in Figure 14.
DOM is applied to access the node and attribute in XML
document, the core source code of this implementation is as
follow.

Figure. 14: Flowchart of SMD

• Following code shows the source code of ’hasNode’
method. This method checks the existence of input node
tag. This method gets the node list and returns‘ true ’
if the node exists.

1 public boolean hasNode(String NodeName) {
2 this.nodeName = NodeName;
3 nl = doc.getElementsByTagName(nodeName);
4 numOfNode = nl.getLength();
5 if (numOfNode != 0) {
6 hasNode = true;
7 }
8 return hasNode;
9 }

• Next is to check whether the method is a main method
or not. Following code conducts this task.

1 public boolean isMain(Node nod){
2 Element ele = (Element) nod;
3 boolean ismain = false;
4 if(ele.hasAttribute(”name”)){
5 ele.getAttribute(”name”);
6 String tmpName = ele.getAttribute(”name

”);
7 if(tmpName.equals(”main”)){
8 ismain = true;
9 }

10 }
11 return ismain;
12 }

• Below lists the detail of ’hasAttr’ method, this
method checks the input node tag to check if it contains
the input attribute.

1 public boolean hasAttr(String attrName, Node nod) {
2 Element ele = (Element) nod;
3 this.hasAttr = ele.hasAttribute(attrName);
4 return hasAttr;
5 }

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 56

1 loadXML xml = new loadXML(fileName);
2 if (xml.hasNode(node)) {
3 cntNode = xml.numOfNode;
4 Node nod;
5 cntAttr = 0;
6 for (int i = 0; i < cntNode; i++) {
7 nod = xml.nl.item(i);
8 if(xml.hasAttr(”static”, nod)){
9 cntAttr++;

10 xml.setexistingplc(node);
11 if (xml.isMain(nod)) {
12 cntAttr−−;
13 continue;
14 }
15 else
16 xml.removeAttr(”static”, nod);
17 }
18 }
19 }

Figure. 15: Essential part of SMD implementation

• Finally, following ’remover’ method deletes the input
attribute of the input node tag.

1 public void removeAttr(String attrName, Node nod) {
2 if (hasAttr(attrName, nod)) {
3 Element ele = (Element) nod;
4 ele.removeAttribute(attrName);
5 }
6 }

Figure 15 is an essential part of implementing SMD operator.

D. Implementing TKD Operator

The mutation operator TKD(”this keyword deletion) is de-
signed to test the Java-specified feature. It deletes this
keyword anywhere it occurs in the program. This operator
checks if the member variables or methods are used correctly
by replacing occurrences of this.X with X. The generated
mutant could be killed by test case that shows different re-
sult when the member variables or methods are replaced by
a method parameter.
The keyword this is referencing variable that is defined at
the current class. There are two usages of this keyword:

1. (a) The keyword this is used to refer current class
variable and/or instance variable.

Super class Subclass
String name; String name;

public Parent() { public Chind(

name="test";} String name1){
this.name=name1;}

The original Java source code under mutation analysis
and its corresponding JavaML are as follows:

Figure. 16: Flowchart of TKD

Original code Coressponding JavaML
...
<binary-expr op="+">

<field-access

field="name">

"access"+this.name <this/>

</field-access>

<literal-string

value="access"/>

</binary-expr>

...

By converting the tags <field-access> and
<field-set> into <var-ref> and <var-set>,
we get the mutated JavaML document.

2. The keyword this is used to invoke current class
method.
The original Java source code under mutation analysis
and its corresponding JavaML are as follows:

Original code Corresponding JavaML
<send meesage="detail">

<target>

<this>

this.detail(); </target>

<arguments>

</arguments>

</send>

In this case, by deleting the node tag <target> di-
rectly, we would get the mutated JavaML document.

As analyzed above, mutation operator TKD is implemented
following the steps in Figure 16.
Following codes show the program of checking and modify-
ing the child nod of the parent node tag. If the parent tag is

57 Wang and Haga

<field-set>, the following codes(a) will delete its child
node <super> and append new child node <var-set>; if
the parent tag is <field-ref>, the following codes(b) will
delete its child node <this> and append new child node
<var-ref>; and if the parent tag is <target>, this node
will be deleted.

(a) Check and modify child node <field-set>

1 if (nod.getFirstChild().getNodeName() == ”this”) {
2 Element newNode = doc.createElement(”var−set”);
3 newNode.setAttribute(”name”,attrName);
4 nod parent. removeChild (nod);
5 nod parent.appendChild(newNode);
6 }

(b) Check and modify child node <field-ref>

1 if (nod.getFirstChild().getNodeName() == ”this”) {
2 Element newNode = doc.createElement(”var−ref”);
3 newNode.setAttribute(”name”,attrName);
4 nod parent.removeChild(nod);
5 nod parent.appendChild(newNode);
6 }

(c) Check and modify child node <target>

1 if (nod.getFirstChild().getNodeName() == ”this”) {
2 nod parent.removeChild(nod);
3 }

E. Implementing PCD Operator

The mutation operator PCD(Parent Constructor Deletion) is
designed to test the inheritance feature of Java. This operator
deletes the calling to the parent class constructor. This causes
the default constructor of the parent class to be called. The
generated mutant could be killed by a test case for which the
parent default constructor creates an incorrect initial state.

Original code Mutant
Class Child extends Class Child extends

Parents { Parents {
Child(int a) { Child(int a) {
super(a); }

} }
}

Parent constructor is invoked by using ”super()” method
in Java. Thus by deleting the parent constructor super(),
we can implement this operator. The Java source code of
parent constructor and its corresponding JavaML code are
follow.

Source code Corresponding JavaML
<super-call>

<arguments>

super(""); <literal-string

value=""/>

<arguments>

<super-call>

By deleting the node <super-call>, we can get the mu-
tated JavaML document.
Based on this analysis shown above, mutation operator PCD
is implemented following the steps in Figure 17.
Following code is a detail of removeTag method, which
deletes an assigned node tag <super-call> from its node
list.

Figure. 17: Flowchart of PCD

1 public void removeTag() {
2 for (int i = numOfTag−1;i>=0;i−−) {
3 Node nod=doc.getElementsByTagName(tagName).item(i);
4 Node nod parent = nod.getParentNode();
5 Node nod child = nod;
6 nod parent.removeChild(nod);
7 setOutputFileName(i);
8 writeXML();
9 nod parent.appendChild(nod child);

10 }
11 }

F. Implementing OMD Operator

The mutation operator OMD(Oveload Method Deletion) is
designed to test the polymorphism feature of Java. This op-
erator works by deleting each of the overloading methods one
by one.

Original code Corresponding JavaML
public void details(){} //public void details(){}
public void details(int n, public void details(int n,

String st)){} String st) {}
Overloading means that the same method name can be de-
fined with different signature (the list of formal parameters
or their types is different):
In JavaML, all methods are represented in node tag
<method>. The attribute name in node tag <method> is
same only when the methods are overloaded. Thus we sepa-
rate the implementation of this operator into two steps:

• Step1: determine if a the node tag <method> is a
overload method by detecting the existence of node tag
<method> with the same value of attribute name,

• Step2: delete the node tag <method> if it is an over-
load method.

Based on the above analysis, the OMD operator is imple-
mented based on the flowchart shown in Figure 18.
Following is a core part of this mutation operator implemen-
tation.

1 if (ele.hasAttribute(”name”)) {
2 nameRecord = ele.getAttribute(”name”);

A novel approach to the design and implementation of mutation operators for Object-Oriented programming language 58

Figure. 18: Flowchart of OMD

3 int n = 0;
4 System.out.println(”Method name is: ”+nameRecord);
5 for (number = 0; number < length; number++) {
6 if (number != checkPoint) {
7 nodComp = nl.item(number);
8 eleComp = (Element) nodComp;
9 if (eleComp.hasAttribute(”name”)) {

10 String tmpComp = eleComp.getAttribute(”name”);
11 if (nameRecord.equals(tmpComp)) {
12 isOverload = true;
13 n++;}
14 }
15 }
16 }
17 }

VII. Conclusion and Future Works

This article proposes a novel approach to implement mu-
tation operators for object-oriented programming language.
This approach is based on the technology of JavaML and
DOM. JavaML document works as the intermediate repre-
sentation to implement mutation operators and DOM is a tool
to processing XML document.
The approach proposed in article first converts the origi-
nal program into JavaML document. Then it implements
mutation operator on JavaML document and gets the mu-
tated JavaML document. And finally it converts the mutated
JavaML document into mutant program. Six object-oriented
mutation operators are designed for Java programs, and im-
plemented correctly in the prototype. The mutated JavaML
documents are generated. This method makes mutation anal-
ysis easier to be processed and has portability on the imple-
mentation of any mutation operator.
Future research requires for implementing other O-O muta-
tion operators. It would be also important to get the eval-
uations of the mutants generated by each mutation opera-
tor: the percentage of dead mutants, still-born mutants, non-
equivalent mutants and equivalent. By evaluating the mu-
tants, mutation analysis improves the efficiency and quality
of each mutation operator.

References

[1] A. Bertolino, “Software testing research: Achieve-
ments, challenges, dreams,” in Proceedings of Future
of Software Engineering (FOSE). IEEE Computer So-
ciety, 2007, pp. 85–103.

[2] A. James, H. Lionel, C. Briand, and Y. Labiche, “Is
mutation an appropriate tool for testing experiments?”
in Proceedings of ICSE 2005, 2005, pp. 402–411.

[3] P. Ammann and J. Offutt, Introduction to software test-
ing. Cambridge University Press, 2008.

[4] D. Flanagan, Java in a Nutshell. O’Reilly Media, Inc,
2005.

[5] G. J. Badros, “JavaML: a markup language for Java
source code,” Computer Networks, vol. 33, no. 1, pp.
159–177, 2000.

[6] R. H. Elliotte, Processing XML with Java: A Guide to
SAX, DOM, JDOM, JAXP, and TrAX. Addison-Wesley
Professional, 2002,

[7] M. Hall and L. Brown, Core Web Programming. Pren-
tice Hall, 2001.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints
on test data selection: Help for the Practicing Program-
mer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[9] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “The class-level
mutants of MuJava,” in Proceedings of the 2006 in-
ternational workshop on Automation of software test,
2006, pp. 78–84.

[10] Y.-S. Ma, Y.-R. Kwon and J. Offutt, “Inter-class mu-
tation operators for Java,” in Proceedings of the 13th
International Symposium on Software Reliability Engi-
neering, 2002, pp. 352–363.

[11] H. Aman, “JJmlt-a Java-JavaML convertor,” http://se.
cite.ehime-u.ac.jp/tool/JJmlt/.

Author Biographies

Qianqian Wang was born in Datong City, Shanxi Province,
China in 1988. She received her BEng from XiDian Univer-
sity in 2011 and double MEng from Xidian University and
Doshisha University in 2014 respectively. During her master
period, she did research on image processing and software
testing. She joined IBM (China) as a software test specialist
after graduation. Currently she is working on storage testing.

Hirohide Haga was born in Kyoto, Japan in 1954. He re-
ceived his BEng, MEng from Doshisha University and Ph.D.
in Computer Science from Kyoto University in 1978, 1980,
and 1995 respectively. In 1980 he joined to Hitachi, Ltd, and
moved to Doshisha University in 1994. In 2001, he was a
visiting scientist of the University of Oulu, Finland. From
2004 to 2005, he was a visiting professor of Cambridge Uni-
versity, UK. In 2011 and 2013, he was an invited professor
of Ecole Centrale de Lille, France.

59 Wang and Haga

Currently he is a professor of the Faculty of Science and En-
gineering, Doshisha University, Kyoto, Japan. His research
interests include software engineering, multi-agent comput-
ing, and digital gaming. He is a member of IEEE, ACM,
BCS (British Computer Society), IPSJ (Information Process-
ing Society of Japan), and IEICE (Institute of Electronics,
Information and Communication Engineers, Japan).

