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Abstract: In this paper, we studied a vast array of machine 

learning approaches (ML). All are sound, robust techniques 

that are extremely applicable to practical prediction problems. 

To guarantee build successful machine learning model in 

predicting crude oil prices, we must apply practical steps for 

selecting best learning algorithm by running it over our data. 

We modeled the prediction process and analyzing the direct 

prediction models, which includes isotonic regression, SMOreg, 

Kstar, IBK ,ExtraTree, REPTree and several types of NNs 

includes FFN, RCN and RBF in previous  articles . The purpose 

of this paper is to construct comparison among the previous 

direct models. Furthermore, the comparison of these algorithms 

is presented based on a root mean squared error (RMSE) and 

mean absolute error (MAE) to find out the best suitable 

approaches. We are confident that this study will be useful to 

researchers for the problem of predicting oil prices and similar 

problem. 

 

Keywords: machine learning, direct prediction models, predicting 

crude oil prices, Isotonic regression, SMOreg, Kstar, 
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I. Introduction 

In 2014, oil prices are down sharply, losing over 50% of 

their value since June peak, when it was $115 a barrel and it is 

now below $51 [1]. This has raised a number of questions: 

Who is responsible for this decline?  What are the factors and 

reasons that led to this change in prices? Will oil prices 

recover in 2015?? What is the effect of this decline on the 

countries that are highly dependent on oil based economy or 

importing countries?  Falling oil prices have both positive and 

negative impacts. On  one hand for many people, cheaper oil 

means lower gasoline prices and economies of importing 

countries may rebound a bit if the declining prices are 

exploited and on the other hand oil-exporting countries are 

very hardly hit. Similarly rise in prices have opposite effects 

in both directions. Crude oil price prediction is a challenging 

task due to its complex nonlinear and chaotic behavior. 

During the last couple of decades, both academicians and 

practitioners have devoted proactive knowledge to address 

this issue. A strand of them has focused on some key factors 

that may influence the crude oil price prediction accuracy 

[2-4], while others concentrated on designing models that 

will assist to predict crude oil with accurate results [5-7]. To 

support the global economy, companies and institutions to 

hedge against surprise changes to make sound decisions and 

building a healthy and successful economy. There is a vast 

and still growing literature that aims to explain and address 

the stochastic behavior of oil prices. Chen, et al. [8] concluded 

that the fluctuation of crude oil prices in the global market at 

present has caused a growing interest and efforts in 

examining current models and proposing new ones and 

identifying improved approaches in order to avoid the effects 

of crude oil price unpredictability. The aim of this paper is on 

the one hand to conduct comparative study between popular 

direct models for predicting crude oil prices this may lead to 

solve the problem of selecting or recommending a suitable 

subset of ML algorithms for a given task such as prediction 

crude oil price and on the other hand the experiments 

evidences can explain the role of selecting appropriate 

parameters for successful  of each algorithm. The structure of 

this paper is as follows. Section 2 depicts the literature review 

followed by the research methodology in Section 3. Section 4 

provides the details about dataset and data preprocessing, 

experimental results and discussions are described in Section 

5. Comparisons between prediction models presented in 

Section 6 and Finally, the conclusions are given in Section 7. 

II. Related Research 

In the past decades, traditional statistical and econometric 

techniques, such as linear regression (LinR), co-integration 

analysis, Generalized Autoregressive Conditional 

Heteroskedastic  (GARCH) models, naive random walk, 

vector auto-regression (VAR) and error correction models 

(ECM) have been widely applied to crude oil price prediction 

http://www.forbes.com/sites/michaellynch/2014/12/08/will-oil-prices-recover-in-2015/
http://www.forbes.com/sites/michaellynch/2014/12/08/will-oil-prices-recover-in-2015/
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[9]. Early attempts to model and forecast volatility 

Huntington [10] implemented a sophisticated econometric 

model to predict crude oil prices in the 1980s. Abramson and 

Finizza [11] suggested a probabilistic method for predictions 

of average annual oil prices. Gulen (1998) followed them  and 

used co-integration analysis to predict the WTI price, using 

monthly data to cover the period of March 1983 to Oct 1995, 

and Barone-Adesi [12],  [13] suggested a semi-parametric 

approach for oil price forecasting. Similarly Morana [14] 

proposed a semi-parametric approach based on the bootstrap 

approach, using daily oil prices for the period from 4 January 

1982 to 21 January 1999 to predict the oil prices. The above 

models can provide good prediction results when the price 

series under study is linear or near linear. However, several 

experiments have proved that the prediction performance 

might be very poor if one continued using these traditional 

statistical and econometric models [15]. The major reason 

causing this phenomenon was that the traditional statistical 

and econometric models were built on linear assumptions and 

they cannot capture the nonlinear patterns hidden in the crude 

oil price series [9]. Due to the limitations of the traditional 

statistical and econometric models, some nonlinear and 

emerging Machine Learning (ML) models, such as artificial 

neural networks (ANN) are viewed as non-parametric, 

nonlinear, and assumption-free models [16]. Single ML 

techniques have been applied to predict crude oil prices using 

voluminous historical data to build prediction models [17]. 

Artificial neural networks (ANN) are designed to represent 

data by simulating the work of the human brain. ANN’s 

emerged in different areas such as industrial, medical and 

business, and has achieved successful results. Therefore, 

many researchers also used ANN in the prediction of oil 

prices. Haidar, et al. [18] suggested a network to predict the 

oil prices using two groups of inputs, crude oil futures data, 

and Dollar index, S&P500, gold price and heating oil price. 

The authors measured performance by heat rate, root mean 

square error, correlation coefficient, mean squared error and 

mean absolute error. The authors concluded that heating oil 

spot price support forecast crude oil spot price in numerous 

steps prediction. Alizadeh and Mafinezhad [19] proposed 

General Regression Neural network (GRNN) using six factors 

monthly data to predict Brent crude oil price. Experiment 

results show that the model achieved high accuracy in normal 

ad crisis situations. Support Vector Machines (SVM) provide 

a class of competitive learning algorithms to improve 

generalization performance of neural networks and 

accomplish global optimum solutions simultaneously [20]. 

Khashman and Nwulu [21] designed an intelligent system 

based on SVM to predict the price of crude oil involving eight 

input factors (global demand; a random world event; among 

others). Empirical results show high prediction accuracy. The 

success of the application of support vector machine in 

solving several problems depend on the appropriate selection, 

and use of a kernel function[22], therefore Chiroma, et al. [22] 

compared the performances of five different kernel functions 

of the support vector machine to provide better understanding 

of the behavior of the kernel functions for support vector 

machine and improve the accuracy of crude oil prediction. 

Monthly data from 1987 to 2012 were utilized.  The empirical 

results exhibited that the wave kernel function is significantly 

better than that of radial basis function, polynomial, 

exponential, and sigmoid kernel functions on crude oil 

prediction. Yu, et al. [7] proposed a new model based on 

rough-set-refined text mining (RSTM) for crude oil price 

predicting. The authors evaluated the model by comparing it 

with statistical models, time series models and neural network 

models, the empirical results display that RSTM outperforms 

other predicting models. Although, in the text mining model  

unlike other well-defined problem domains, expert opinions 

on the crude oil markets can vary wildly [23]. 

III. Research Methodology 

A. Isotonic Regression  

The isotonic regression [24] finds a non-decreasing 

approximation of a function while minimizing the mean 

squared error on the training data. The algorithm sweeps 

through the data and adjusts the estimate to the best possible 

fit with constraints. Sometimes it also needs to modify 

previous points to make sure the new estimate does not violate 

the constraints.  The benefit of such a model is that it does not 

assume any form for the target function such as linearity [25].  

B. Support vector regression 

Support Vector Machines (SVM) are supervised learning 

models used for classification and regression analysis. It 

offers one of the most robust and accurate methods among all 

well-known algorithms [26].  An SVM model is a 

representation of the examples as points in space, mapped so 

that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. Support Vector 

Regression (SVR) is an SVM algorithm to handle nonlinear 

prediction [27]. SMOreg is an iterative optimization 

algorithm proposed by Smola and Schölkopf [28] for using 

SVR regression. SMOreg uses constraints structural risk 

minimization as the model and has the good ability to model 

regression, prediction with non-linear data. SVM 

generalization performance depends on a good setting of their 

parameters. We used RBF as a kernel function and C =1, 

which indicates the complexity. 

C. K Star 

K Star (K*) is an instanced based classifier  [29]. A new 

data instance is classified by comparing it to the stored 

examples in order to find the most similar ones. This 

approach is also called nearest neighbor classification and the 

main advantage of this approach is that arbitrary complex 

structures in the data can be captured and training and 

retraining this model is fast. 

D. Instance Based Learning 

Instance-based learning (IBL) algorithms are derived from 

the nearest neighbor machine learning philosophy. IBK is the 

number of nearest neighbors (k) can be set manually or 

determined automatically. Each unseen instance is always 

compared with existing ones using a distance metric. 

Instance-based algorithms have numerous advantages one 

benefit of this approach is its simplicity[30]. We selected a 

default value of K=1 based on cross-validation. 



Gabralla and Abraham 

 

 

320 

E. Extra-Tree 

The Extra-Trees algorithm constructs an ensemble of 

unpruned decision or regression trees. At each node number 

of attributes were selected randomly and splitting a node with 

minimum sample size. It is generated numerous times with 

the original learning sample to produce an ensemble model. 

The predictions of the trees are combined to get the final 

prediction, by majority vote in classification problems and 

average in regression problems. The basic differences with 

other tree based ensemble methods are it uses the whole 

learning sample  and  splits nodes by choosing cut-  points 

fully  randomly [31].  

F. REP-Tree 

Reduced Error Pruning Tree (REPtree) is a fast decision 

tree learner. It builds a decision tree based on information 

gain or reducing the variance and prunes it using  

reduced-error pruning (REP) with back over fitting [32]. 

G.    Neural Networks (NNs) 

NNs are computer models constructed to mimic the 

functions of the human brain through parallel computation of 

several input vectors. NNs are composed of neurons 

distributed in the input, hidden, and output layers [33]. We 

used several types of supervised networks such as Feed 

forward neural network (FFN), Radial basis function (RBF), 

and dynamic Recurrent network (RCN). FFN networks are 

most frequently used for prediction and pattern recognition. 

RBF provides an alternative, fast method for designing 

nonlinear feed-forward networks. Dynamic networks use 

memory and recurrent feedback connections to recognize 

spatial and temporal patterns in data. They are commonly 

used for time-series prediction, nonlinear dynamic system 

modeling, and control systems applications (Demuth et al., 

2008, Demuth, Beale, 2000).  

1) Feed forward Neural Networks (FFN)  

Backpropagation [34] method is a supervised  learning  

scheme and the most  popular technique in multilayer 

networks when a set of input produces its own actual output 

and then compare it with the target value by calculating the 

error, after that error is fed back through the network.  The 

weights of each connection are adjusted to reduce the error in 

several ways, such as gradient descent etc. until sufficient 

performance is achieved. To improve the generalization, 

there are several learning methods such as Levenberg – 

Marquardt (LM), Bayesian regularization (BR) and BFGS 

quasi-Newton (BFG-QN) back propagation algorithm [35]. 

In addition, each neuron in a particular layer is connected 

with all neurons in the next layer.  The connection between 

the ith and jth neuron (in a different layer) is characterized by 

the weight coefficient ij and the ith neuron itself is 

characterized by the threshold coefficient i (Figure 1).The 

weight coefficient reflects the degree of importance of the 

given connection in the neural network. The output value of 

the ith neuron xi is determined by Eqs. (1) and (2)): 

)i(fxi   (1) 





N

1j
jxijωiυiξ  (2) 

Where N is the neurons’ number, i is the potential of the ith 

neuron and function f (i) is the so-called transfer function. 

The supervised adaptation process varies the threshold 

coefficients i and weight coefficients ij to minimize the 

sum of the squared differences between the computed and 

required output values. This is accomplished by minimization 

of the objective function E, given in equation (3): 

 
Figure 1. Connection between two neurons i and j 

 

Where xO, and xd, are vectors composed of the computed and 

desired output neurons and summation runs over all output 

neurons O. 

2)      Recurrent Neural Network (RCN) 

RCN is the state of the art in nonlinear time series 

prediction, system identification, and temporal pattern 

classification.  As the output of the network at time t is used 

along with a new input to compute the output of the network 

at time t +1, the response of the network is dynamic [36] . 
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3)      Radial Basis Function (RBF) 

Radial Basis Function (RBF) [36]  is an artificial neural 

network that uses radial basis functions as activation 

functions. The output of the network is a linear combination 

of radial basis functions of the inputs and neuron parameters. 

RBF is successful in numerous fields especially for 

system control, time series and prediction. 

IV. Data set and Experimental Environment 

A. Dataset Description 

The dataset for experiments are obtained cooperative by 

Faculty of Management and Economic Sciences, Sousse 

University, Tunisia. It consists of 3337 records as instances 

and 14 variables as attributes to predict the West Taxes 

Intermediate (WTI) as output. The data set was taken from 

different sources such as [37, 38]. Attributes are listed as 

below: 

  Date (DT): The daily data from 4 January 1999 to 10 

October 2012. Dates are converted to numeric form when the 

input file is read. 

  West Texas Intermediate (WTI): It is the most famous 

benchmark [9], and plays an important role as a reference 

2)dxo(x
O 2

1
E 

 
 (3) 
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point to determine the price, and it constitutes a crucial factor 

in the configuration of prices of all other commodities [39]. 

 Federal Fund rate (FFR): One of the most influential 

interest rates in the U.S. economy, because it effects on 

monetary and financial conditions, which in turn have an 

impact on fundamental aspects of the broad economy 

including employment, growth and inflation [40]. 

 Volatility Implied Equity Index (VIX): Measures the 

contribution of the instability of the market. 

  The regional Standard and Poor's equity index (SPX): 

Represent the market performance.  

  New York Harbor conventional gasoline spot prices 

(GPNY): As example to assesses oil products.  

  US Gulf Coast conventional gasoline spot 

prices( GPUS): As example to assesses oil    products.  

  New York Harbor No. 2 heating oil spot price (HP): As 

indication of seasonality in the energy market. 

  Future contracts 1 (FC1): For WTI to maturity traded on 

NYMEX 

  Future contracts 2 (FC2): For WTI to maturity traded on 

NYMEX 

  Future contracts 3 (FC3): For WTI to maturity traded on 

NYMEX 

  Future contracts 4 (FC4): For WTI to maturity traded on 

NYMEX.  

  Exchange rate (ER): The price of oil and exchange rates 

of other currencies against the U.S. Dollar price. 

  Gold prices (GP):  Gold is that less volatile than crude oil 

and could reflect the real trend in the commodity market 

rather than the noise and gold used as the results of investors 

hedge against inflation caused by the oil price shock [41]. 

B. Data preprocessing  

Before constructing a model we selected several aspects of 

initial preparation of data. Feature selection, normalization 

and data partition  are used for preparation the inputs. It is 

worth mentioning that these steps are often used when 

designing any model in this research. We implemented first 

feature selection methods which is defined as a process of 

selecting a subset of features, d, out of the larger set of D 

features, which maximize the classification or prediction 

performance of a given procedure over all possible subset data. 

The second method is normalization, which shifts the 

instance values in specific and obviously means to represent 

information contained within the data and the data set [42]. 

Finally divided the dataset to groups according to deferent 

percentages of training and testing. The detail for each 

approach in the Sections below. 

1) Feature selection methods 

We formulated 10 different sub datasets, which were 

derived from the original dataset after implementing the 

several attribute selection algorithms. For instance SBDS1 

and SBDS2 are as a result of Correlation based Feature 

Selection (CFS) algorithm by evaluating the value of a group 

of attributes by concerning the individual predictive ability of 

each feature as well with the possibility of redundancy among 

the features with several search methods such as best-first, 

which keeps a list of all attribute subsets evaluated so far, 

sorted in order of the performance measure. We used Forward 

selection, where we start with no attributes and add them one 

at a time and Backward, where we start with all the attributes 

and delete each one at a time, stops when the 

addition/deletion of any residual attributes results in a 

decrease in evaluation. In a case of one, begin with all the 

attributes or with none of them and this called bidirectional 

search method [43]. In SBDS3 and SBDS4, we utilized 

Genetic algorithm, which is based on search processes on the 

principle of natural selection [43]. SBDS5 is formulated after 

a Random search in the space of attribute subsets. Random 

search starts from a random point and reports the best subset 

found. If a start set is supplied, Random searches randomly 

for subsets, which is useful or better than the start point with 

the same or fewer attributes. [44].We performed forward 

selections with a limited number of k attributes, based on the 

ranking using training data to decide, which attribute is added 

in each iteration of forward selection, and the test data is only 

used to evaluate the “best”, P best subsets of a particular size. 

To determine the “optimal” subset size, we average the P 

scores on the test data for each subset size, and choose the size 

with the highest average. Then, a final forward selection is 

performed on the complete data set to find a subset of that 

optimal size and SBDS6 is created. When we used Classifier 

subset evaluator algorithm, we get SBDS7 by evaluating 

attribute subsets on training data or a separate hold out testing 

set using Support vector regression to estimate the 'merit' of a 

set of attributes with genetic search method. We get SBDS8 

using Relief attribute evaluation algorithm, which evaluates 

the quality of attributes according to the value of the given 

attribute for the near instance to each other   and different 

predicted (class) value [45]. We used  ranker  as search 

method, which Ranked the list of attributes based on 

individual evaluation of each attribute [46]. SBDS9and 

SBDS10 used wrapper algorithm, which evaluate attribute 

sets by using SMOreg algorithm. It is called wrapper because 

the learning algorithm is wrapped into a selection task [43]. 

We implemented the best-first search method in two 

directions: forward and backward respectively. Table 1 

illustrates the categories and attributes for each algorithm. 

2) Normalization  

     Most models work well with normalized data sets the data 

were normalized using Eq. (5) by scaling the instance to the 

range between -1 and 1 to improve prediction accuracy and 

CPU processing time [47] . 

minxmaxp
minxik

on





 
(5) 

Where = normalized dataset = raw dataset,  = 

minimum value of the dataset and maximum value of 

the dataset.  

3) Data Partition  

There are various alternatives to recognize the training and 

testing split process such as cross-validation, bootstrap and 

holdout [43]. According to holdout method, we divided 

dataset randomly into two parts, one half of training and the 
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other half for testing. It is common to hold out one-third of the 

data for testing and use the remaining two-thirds for training 

[43]. However, several researchers achieved good results with 

other divisions, for example Lai, et al. [48] created their 

model using 60% for training and 40% for testing while  Yu, 

et al. [49] utilized 80% for training and 20% for testing. We 

investigated the effect of training and testing data by 

randomly splitting them as shown in Table 2. We used several 

percentages to increase the opportunities for achieving better 

results. In the literature, there are also some studies conducted 

by using such divisions for training and test data [50] . 

 

Table 1. Attribute selection methods and their features 

Sub Dataset Attributes evaluator Search method Attributes 

SBDS1 
Correlation based Feature Selection 

subset evaluator 
Best-first-Forward WTI,SPX,FG1 

SBDS2 
Correlation based Feature Selection 

subset evaluator 
Best-first- Backward 

DT,VIX,WTI,SPX,GPNY 

GPUS,HP,ER,FC1,FC2,FC3,FC4 

SBDS3 
Correlation based Feature Selection 

subset evaluator 
Genetic VIX,WTI,GPNY, ER, FC1 

SBDS4 
Correlation based Feature Selection 

subset evaluator 
Genetic WTI,GPNY,FC1 

SBDS5 
Correlation based Feature Selection 

subset evaluator 
Random WTI,SPX,ER, FC1 

SBDS 6 
Correlation based Feature Selection 

subset evaluator 
Subset Size Forward Selection VIX,WTI,GPNY, FC1 

SBDS7 Classifier subset evaluator Genetic- SMOreg 
VIX,WTI,SPX, GPNY, ER, FC1, FC2 

SBDS8 Relief attribute evaluation Ranker 
WTI,FC1,FC2, FC3, FC4, VIX, GPUS, 

HP,GP,FFR,SPX,DT,ER 

SBDS9 Wrapper subset evaluator (SMOreg) Best-first- Forward WTI,GPUS 

SBDS10 Wrapper subset evaluator (SMOreg) Best-first- Backward WTI,FC1 

 

Table 2. Training and testing percentages 

Trainin

g 

Testin

g 
Label 

  (A) 

  (B)

  (C)

  (D)

 

V. Experimental Results 

The purpose of this Section is to measure the performance of 

direct prediction models. On the one hand, we used ten sub 

datasets (SBSD1, SBDS2, SBDS3, SBDS4, SBDS5, SBDS6, 

SBDS7, SBDS8, SBDS9 and SBDS10) which is derived from 

the original dataset by using several attribute selection 

algorithms mentioned in Table 1 and on the other hand we 

used four groups (A-B-C-D), which contain different training 

and testing percentages as displayed in Table 2. It is worth 

mentioning that we repeated the training and testing 

experiments ten times with different random sample for each 

sub dataset to guarantee that the full dataset represented in the 

training and testing sets in the correct way and the error rates 

on the different iterations are averaged to yield an overall 

error rate. To judge the prediction performances and evaluate 

the accuracy of prediction, there are two basic criteria: the 

Mean Absolute Error (MAE) and Root Mean Square error 

(RMSE).  The smaller the value of the evaluation indexes, the 

higher the performance of the algorithm.  Willmott and 

Matsuura [51] indicated that MAE is a more natural measure 

of average error, it is unambiguous and comparisons of 

average model performance error should be based on MAE.  

e.g. [52], [53] and [54]. 

MAE =   (6) 

RMSE is a widely used measure to calculate differences 

between the values predicted by a model or a predictor and the 

values actually observed e.g.  [52],[49],  and   [55] .   RMSE is 

defined by the formula: 

RMSE =  (7) 

To simplify the extensive list of experiments, we classified the 

experiments of direct prediction models in two groups as 

follows: 

A.  First Phase Experiments and Results  

In this Section, we implemented six direct algorithms, namely 

Isotonic Regression, SMOreg, Kstar, IBK, ExtraTree and 

REPTree [27] . Figure 2 shows the performance of six 

algorithms in order to determine best approaches. Table 3 

reports the empirical results illustrating MAE and Table 4 

presents the RMSE for the six algorithms.  

 

Figure 2. MAE for six prediction models with 10 

sub-data set 
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Table 3. MAE for first phase experiment 

 

Table 4. RMSE  for first phase experiment 

Prediction 

Model 
Data SBDS1 SBDS2 SBDS3 SBDS4 SBDS5 SBDS6 SBDS7 SBDS8 SBDS9 SBDS10 

Isotonic 

Regressio

n 

A 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 5.27E-02 

B 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 5.34E-02 

C 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 6.16E-02 

D 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 7.12E-02 

SMOreg 

A 6.71E-02 9.19E-02 5.32E-02 7.00E-02 7.06E-02 6.10E-02 8.06E-02 9.27E-02 4.49E-02 3.10E-02 

B 6.99E-02 1.00E-01 6.62E-02 7.55E-02 7.54E-02 6.99E-02 8.93E-02 1.01E-01 5.63E-02 3.18E-02 

C 7.13E-02 1.00E-01 6.99E-02 7.95E-02 7.43E-02 6.91E-02 9.10E-02 1.04E-01 5.85E-02 3.53E-02 

D 7.97E-02 1.05E-01 7.47E-02 8.44E-02 8.75E-02 7.86E-02 9.48E-02 1.10E-01 6.63E-02 3.03E-02 

Kstar 

A 1.85E+00 6.74E-01 1.64E+00 1.04E+00 1.31E+00 1.21E+00 7.88E-01 6.71E-01 2.20E+00 3.35E+00 

B 1.89E+00 7.07E-01 1.66E+00 1.04E+00 1.35E+00 1.22E+00 8.05E-01 7.16E-01 2.25E+00 3.41E+00 

C 1.95E+00 7.45E-01 1.69E+00 1.06E+00 1.39E+00 1.24E+00 8.32E-01 7.52E-01 2.31E+00 3.47E+00 

D 1.96E+00 8.16E-01 1.71E+00 1.11E+00 1.39E+00 1.29E+00 9.02E-01 8.24E-01 2.31E+00 3.50E+00 

IBk 

A 5.51E-01 8.76E-01 3.82E-01 8.76E-01 8.17E-01 7.20E-01 8.90E-01 8.74E-01 1.28E-01 4.11E-01 

B 5.90E-01 9.50E-01 4.40E-01 9.33E-01 8.64E-01 7.65E-01 9.56E-01 9.37E-01 1.40E-01 4.38E-01 

C 6.14E-01 9.93E-01 4.56E-01 9.77E-01 9.00E-01 8.09E-01 1.01E+00 9.85E-01 1.43E-01 4.56E-01 

D 6.58E-01 1.07E+00 5.04E-01 1.05E+00 9.46E-01 8.79E-01 1.08E+00 1.07E+00 1.66E-01 4.93E-01 

ExtraTree 

A 2.15E-01 3.68E-01 2.75E-01 2.63E-01 2.41E-01 2.70E-01 2.75E-01 3.47E-01 1.94E-01 2.34E-01 

B 2.15E-01 3.68E-01 2.75E-01 2.63E-01 2.41E-01 2.70E-01 2.75E-01 3.47E-01 1.94E-01 2.34E-01 

C 2.68E-01 4.17E-01 3.05E-01 2.98E-01 2.80E-01 2.88E-01 4.11E-01 3.81E-01 2.19E-01 3.01E-01 

D 2.79E-01 4.66E-01 3.23E-01 3.77E-01 3.27E-01 3.90E-01 4.37E-01 4.49E-01 2.41E-01 3.67E-01 

REPree 

A 1.82E-01 2.29E-01 1.78E-01 2.38E-01 1.83E-01 2.38E-01 2.47E-01 2.24E-01 1.76E-01 1.66E-01 

B 2.36E-01 2.93E-01 2.36E-01 2.75E-01 2.37E-01 2.74E-01 2.82E-01 2.78E-01 2.32E-01 2.03E-01 

C 2.47E-01 3.06E-01 2.51E-01 2.81E-01 2.49E-01 2.79E-01 2.93E-01 3.19E-01 2.40E-01 2.35E-01 

D 3.01E-01 3.67E-01 2.96E-01 3.56E-01 3.03E-01 3.53E-01 3.61E-01 3.63E-01 2.93E-01 2.65E-01 

  

Prediction 

Model 
Data SBDS1 SBDS2 SBDS3 SBDS4 SBDS5 SBDS6 SBDS7 SBDS8 SBDS9 SBDS10 

Isotonic 

Regressin 

A 2.22E-02 2.22E-02 2.20E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 2.22E-02 

B 2.42E-02 2.42E-02 2.40E-02 2.42E-02 2.42E-02 2.42E-02 2.42E-02 2.42E-02 2.42E-02 2.42E-02 

C 2.78E-02 2.78E-02 2.80E-02 2.78E-02 2.78E-02 2.78E-02 2.78E-02 2.78E-02 2.78E-02 2.78E-02 

D 3.25E-02 3.25E-02 3.30E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 3.25E-02 

SMOreg 

A 4.40E-02 6.60E-02 2.86E-02 4.94E-02 4.85E-02 3.77E-02 5.73E-02 6.79E-02 2.23E-02 2.32E-02 

B 3.93E-02 7.01E-02 3.50E-02 4.77E-02 4.77E-02 3.84E-02 5.98E-02 7.06E-02 2.63E-02 2.44E-02 

C 4.07E-02 6.99E-02 3.99E-02 5.20E-02 4.64E-02 3.68E-02 6.31E-02 7.32E-02 2.86E-02 2.65E-02 

D 4.44E-02 6.99E-02 3.90E-02 5.16E-02 5.58E-02 4.09E-02 6.31E-02 7.52E-02 3.10E-02 2.21E-02 

Kstar 

A 9.72E-01 4.56E-01 9.08E-01 7.10E-01 8.44E-01 7.94E-01 5.35E-01 4.55E-01 9.65E-01 1.90E+00 

B 9.76E-01 4.69E-01 9.01E-01 7.11E-01 8.53E-01 7.92E-01 5.47E-01 4.74E-01 9.60E-01 1.90E+00 

C 9.88E-01 4.87E-01 9.00E-01 7.23E-01 8.61E-01 7.98E-01 5.62E-01 4.91E-01 9.73E-01 1.91E+00 

D 1.00E+00 5.16E-01 9.13E-01 7.39E-01 8.70E-01 8.11E-01 5.87E-01 5.20E-01 9.83E-01 1.93E+00 

IBk 

A 3.74E-01 6.32E-01 2.52E-01 6.23E-01 6.04E-01 4.83E-01 6.42E-01 6.27E-01 6.66E-02 2.50E-01 

B 3.96E-01 6.62E-01 2.67E-01 6.48E-01 6.29E-01 5.00E-01 6.72E-01 6.56E-01 6.91E-02 2.65E-01 

C 4.18E-01 6.91E-01 2.82E-01 6.77E-01 6.55E-01 5.24E-01 7.02E-01 6.87E-01 7.35E-02 2.81E-01 

D 4.47E-01 7.31E-01 3.05E-01 7.19E-01 6.91E-01 5.57E-01 7.45E-01 7.32E-01 8.11E-02 3.07E-01 

ExtraTree 

A 8.32E-02 1.60E-01 1.01E-01 1.13E-01 1.00E-01 1.07E-01 1.23E-01 1.46E-01 7.73E-02 8.51E-02 

B 8.67E-02 1.76E-01 1.09E-01 1.18E-01 1.10E-01 1.23E-01 1.32E-01 1.62E-01 8.29E-02 1.00E-01 

C 1.04E-01 1.76E-01 1.22E-01 1.19E-01 1.09E-01 1.18E-01 1.54E-01 1.68E-01 9.40E-02 1.09E-01 

D 1.19E-01 1.95E-01 1.32E-01 1.49E-01 1.31E-01 1.45E-01 1.73E-01 1.90E-01 1.05E-01 1.31E-01 

REPree 

A 8.32E-02 9.70E-02 8.30E-02 9.35E-02 8.42E-02 9.24E-02 9.57E-02 9.45E-02 8.14E-02 7.54E-02 

B 9.67E-02 1.14E-01 9.70E-02 1.04E-01 9.76E-02 1.03E-01 1.09E-01 1.11E-01 9.39E-02 8.61E-02 

C 1.11E-01 1.30E-01 1.12E-01 1.19E-01 1.12E-01 1.18E-01 1.24E-01 1.30E-01 1.08E-01 1.01E-01 

D 1.27E-01 1.50E-01 1.26E-01 1.39E-01 1.28E-01 1.38E-01 1.43E-01 1.46E-01 1.23E-01 1.14E-01 
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As illustrated in Figure 2, the K Star algorithm did not 

perform well for all the training and testing and for the 

different attributes. Time needed by the system to learn is 

another important criteria that may be considered in model 

selection [56], therefore in this Section we hold comparisons 

between prediction models based on time. According to Table 

5 Isotonic regression and Extra Tree  consumed less time with, 

while Kstar fails to achieve suitable time comparing with 

other models and SMOreg succeed to get less error but 

consumed long time so this consider drawback for it . The 

recorded time in this Table represents the time required to  by 

each algorithm for all 10 sub data sets 

Table 5. Time schedule for direct prediction models 

Prediction Model Data Time  

 Isotonic Regression 

A 00:00:04 

B 00:00:04 

C 00:00:04 

D 00:00:04 

SMOreg 

A 00:10:15 

B 00:09:24 

C 00:07:58 

D 00:05:14 

Kstar 

A 00:25:19 

B 00:43:27 

C 00:54:58 

D 01:03:02 

IBK 

A 00:00.11 

B 00:00.19 

C 00:00.22 

D 00::00:25 

ExtraTree 

A 00:00:05 

B 00:00:04 

C 00:00:04 

D 00:00:04 

REPtree 

A 00:00:08 

B 00:00:11 

C 00:00:14 

D 00:00:15 

Summarizes the important results as follows: SMOreg, 

Isotonic Regression, REPtree and ExtraTree achieved less 

MAE 2.21E-02,2.22E-02,7.54E-02 and 7.73E-02 

respectively and IBK accomplished good results 6.66E-02 

with SBDS9 only. Training and testing (A) which represent 

90% training & 10 testing achieved best results with most 

algorithms also the best results focused in SBDS9 & SBDS10 

and poor results were posted in (SBDS5, SBDS7 & SBDS8) 

thus were removed from further experiments. SMOreg 

surpassed other algorithms in RMSE (3.03E-02). Table 6 

display this results.We conclude from above discussions that 

Kstar was not appropriate to solve our problem.  

Table 6. Summary of the results for direct  prediction 

models 

B. Second Phase Experiments and Results  

Numerous important characteristics of neural networks make 

them proper and valuable for data mining and machine 

learning so the objective of this Section is to provide a variety 

of the training and testing percentages with a set of different 

inputs using several kinds of neural networks to get high 

accuracy for the model. Neural network experiments are 

accomplished in MATLAB [57]. Neural networks with one 

and sometimes two hidden layers are widely used, for the 

large majority of problems and have performed very well 

(Panchal et al., 2011). Increasing the number of hidden layers 

are extremely hard to train, increases computation time and 

may lead to over-fitting which leads to poor out-of-sample 

predicting performance for this reason we used one hidden 

layer in this work. One of the most important characteristics 

of a network is the number of neurons in the hidden layer (s). 

If an insufficient number of neurons are used, the network 

will be unable to model complex data, and the resulting fit 

will be poor. Despite its importance, there is no formula for 

selecting the optimum number of hidden neurons. Therefore, 

scholars depend on experimentation. We used 

40-45-50-55-60 neurons in the hidden layer based on trial and 

error approach. In most cases, the literature suggests the use 

of a trial-and-error approach to configuring network 

parameters, where the performance goal is set by the user. For 

instance, (Rene et al., 2013) used trial-and-error approach to 

determine network parameters.  Selection of the training 

algorithm, which is suitable for our problem, depends on 

many factors such as the complexity of the problem and the 

number of inputs and others (Demuth et al., 2008). We used 

the Levenberg-Marquardt (LM), Bayesian regularization (BR) 

and BFGS Quasi-Newton (BFG-QN) algorithms because they 

are commonly used for regression problems and is easy to 

compare with other algorithms. The transfer function we 

applied is tan-sigmoidal for the hidden layer and pure linear 

function in the output layer, the maximum number of epochs 

is set to 1000 and the training goal is set to 0. 

1) Feed Forward Neural Network (FFN) 

According to Table 7, FFN utilized the 7 sub-datasets, which 

were selected as the best sub-dataset based on previous 

experiments. The best results were obtained when using the 

Bayesian regulation (BR) back-propagation method with 80% 

training and 20% testing , and sub-dataset1 (SBDS1) achieved 

a MAE= 3.843E-05 with 90% training and 10% testing using 

45 neurons. Figure 3 shows a comparison between the 

training algorithms for 7 sub-datasets and 4 groups of 

training and testing illustrating the superiority of BR. We 

measured the performance using MAE and RMSE.  

2) Recurrent Neural Network (RCN) 

We implemented RCN using one hidden layer with 10 

neurons and used three training algorithms: Levenberg 

–Marquardt (LM), Bayesian regularization (BR) and BFGS 

Quasi-Newton (BFG-QN). Bayesian regularization method 

outperformed other algorithms by 51.85%. It is noted from 

Prediction  

Model 

Data MAE RMSE Sub 

dataset 

Time 

Isotonic A 2.220E-02 5.270E-02 All-SBDS 00:00:04 

SMOreg D 2.210E-02 3.030E-02 SBDS10 00:05:14 

Kstar A 4.546E-01 6.706E-01 SBDS8 00:25:19 

IBk A 6.660E-02 1.284E-01 SBDS9 00:00.11 

ExtraTree A 7.730E-02 1.936E-01 SBDS9 00:00.05 

REPree A 7.540E-02 1.661E-01 SBDS10 00:00.08 
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Table 8 for all the sub-datasets (80% training and 20% testing) 

is the best (shaded area), except in sub-dataset (SBDS6) 90% 

training and 10% testing is the best. On the other hand, the 

lowest value of 

 

Table 7. Performance of FFN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 3. Comparison between training algorithms 

 

 

 

 

 

 

Sub-dataset

s 
Data 

Mean Absolute Error Hidden 

layer 

neurons 
LM BR BFG-QN 

SBDS1 

A 1.48352E-03 3.84294E-05 8.00000E-04 45 

B 4.81400E-03 1.35000E-04 4.00000E-04 45 

C 5.77900E-03 3.55000E-04 1.50000E-03 45 

D 8.15200E-03 4.38000E-04 6.30000E-03 40 

SBDS2 

A 9.17000E-04 2.83700E-03 9.00000E-04 40 

B 4.48000E-04 2.18100E-03 4.00000E-04 40 

C 2.74700E-03 1.02200E-03 1.90000E-03 45 

D 3.15700E-03 7.69000E-04 1.00000E-03 60 

SBDS3 

A 1.83600E-03 1.26594E-04 1.10000E-03 50 

B 3.00400E-03 1.24897E-04 9.00000E-04 50 

C 1.21500E-02 5.31100E-03 3.10000E-03 45 

D 1.69940E-02 4.06200E-03 1.80000E-03 45 

SBDS4 

A 5.58850E-02 5.74155E-05 7.80000E-03 50 

B 2.86700E-03 6.45000E-05 1.60000E-03 50 

C 2.48740E-02 3.04484E-04 7.70000E-03 50 

D 1.67079E-02 1.94000E-04 2.40000E-03 50 

SBDS6 

A 3.50300E-03 9.65000E-04 2.00000E-03 55 

B 1.40900E-03 6.80000E-05 8.00000E-04 60 

C 2.19900E-02 3.73327E-04 2.80000E-03 40 

D 4.28700E-02 2.10900E-03 2.60000E-03 40 

SBDS9 

A 1.44560E-02 6.23000E-05 5.70000E-03 40 

B 1.94854E-02 6.04640E-05 3.10000E-03 60 

C 3.23723E-01 3.49000E-04 4.95000E-02 55 

D 1.07220E-01 1.62000E-04 2.25000E-02 55 

SBDS10 

A 5.69780E-02 1.90200E-03 1.92300E-01 40 

B 1.39500E-02 1.97000E-04 9.70000E-03 55 

C 9.65800E-02 2.25700E-03 3.45000E-02 40 

D 2.83030E-01 4.50000E-04 3.32000E-02 55 
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Table 8. Performance of RCN 

 

Sub-datasets Data 
Mean Absolute Error 

LM BR BFG-QN 

SBDS1 

A 1.14102E-03 1.27500E-03 2.52400E-03 

B 1.17400E-03 2.48800E-03 5.79000E-04 

C 1.03650E-02 6.98300E-03 1.25780E-02 

D 1.29940E-02 7.69800E-03 1.29150E-02 

SBDS2 

A 4.60000E-04 3.77000E-04 2.18328E-02 

B 2.22000E-04 1.74000E-04 1.18390E-02 

C 1.36700E-03 1.44800E-03 7.03600E-02 

D 8.61000E-04 3.32000E-04 3.45920E-02 

SBDS3 

A 5.22000E-04 4.43900E-03 2.55500E-03 

B 3.57762E-04 1.05000E-04 6.40100E-03 

C 4.21100E-03 2.82000E-04 4.10660E-02 

D 6.82000E-04 1.68000E-04 1.67200E-02 

SBDS4 

A 7.68000E-04 4.80285E-05 1.58640E-02 

B 5.20102E-05 3.94799E-05 7.16800E-03 

C 4.73000E-04 2.17658E-04 2.00530E-02 

D 2.08400E-03 1.81824E-04 6.17200E-03 

SBDS6 

A 3.94114E-05 9.52860E-05 4.38700E-03 

B 1.16000E-04 1.12000E-04 4.13600E-03 

C 4.41680E-04 3.77708E-01 1.42909E-01 

D 4.95000E-04 3.62000E-04 9.70200E-03 

SBDS9 

A 1.83283E-04 1.51900E-03 3.33800E-03 

B 1.72000E-04 1.89800E-03 1.58400E-03 

C 1.82716E-03 6.89000E-03 6.86900E-03 

D 9.69000E-04 5.59500E-03 4.03800E-03 

SBDS10 

A 5.80000E-04 2.48000E-04 1.01690E-02 

B 1.47000E-04 2.19000E-04 2.20500E-03 

C 1.30400E-03 1.01200E-03 4.03600E-03 

D 4.30824E-04 6.10500E-03 1.03750E-02 

the error is 3.941 E-05 when using 90% training and 10% 

testing with sub-dataset (SBDS6). 

3) Radial Basis Function Network (RBF) 

We constructed the network until it reached a maximum 

number of neurons or the sum-squared error falls beneath an 

error goal. Table 9 shows the results obtained using the seven 

sub-datasets and different number of neurons:  40, 45, 50, 55 

and 60. The shaded area indicates the best results when using 

60 neurons in few sub-datasets then followed by 55 neurons. 

According to the percentage of training and testing 

sub-dataset (SBDS1– SBDS3-SBDS4- SBSD 9 & SBDS10) 

achieved the best results with 80% training and 20% testing. 

The best results over all sub-datasets is an MAE of 2.206 E-05 

in SBDS9 with 80% training & 20 % testing using 45 

neurons. 

Measure performance by RMSE is depicted in Table 10 for 

best results for each NN algorithms. In order to investigate the 

effect of the algorithms we calculated the average of the 

training period for FFN, RCN, and RB when using BR as a 

training algorithm. Based on the results in Table 11, the 

training time depends on the sub dataset size for example 

SBDS2 include 13 features consumes more time than other 

sub-datasets as well as training rate and its impact, decrease 

the training ratio leads to increased speed, therefore always D 

is better than A. We observed from the Table 11 that RBF is 

characterized by it speed followed by RCN and finally FFN. 

VI. A Comparison Analysis of Direct Prediction 

Models  

From the results presented, we can draw the following 

comparisons: Based on experiments in Section 5.1.1 SMOreg 

outperformed other algorithms but it suffers from the 

consumed time, Kstar gets high error. We compared the 

results of three different types of neural networks as shown in 

Figure 4 using RMSE and observed that the RBF network 

outperformed other methods in obtaining the lowest error 

(MAE= 2.206 E-05 & RMSE= 1.291E-03). Also, the data set 

using training 80% and testing 20% accomplished the best 

results for RCN and RBF neural network methods. In the FFN 

and RBF networks, the best results were obtained when using 

45 neurons and RBF proved its superiority. RBF networks 

outperformed again in the time factor, as it was faster than 

feed-forward and recurrent neural networks. Table 12 shows 

this comparison. 
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Table 9. Performance of RBF 

Sub-dataset

s 
Data 

Mean Absolute Error based on the number of neurons  

40 45 50 55 60 

SBDS1 

A 1.03146E-04 9.34926E-05 1.00340E-04 5.70070E-05 5.08729E-05 

B 1.53000E-04 1.48000E-04 1.09000E-04 2.58000E-04 2.40010E-05 

C 4.84160E-05 5.01626E-05 5.02828E-05 5.02436E-05 4.98570E-05 

D 3.88153E-05 3.81595E-05 3.81548E-05 3.81543E-05 3.81548E-05 

SBDS2 

A 5.05680E-03 2.70885E-03 1.53678E-03 1.33255E-03 1.36009E-03 

B 4.09600E-03 3.23000E-03 3.02800E-03 1.85800E-03 1.68000E-03 

C 6.13000E-03 6.04800E-03 5.16800E-03 4.47700E-03 2.85700E-03 

D 8.42200E-03 8.58200E-03 7.28400E-03 5.07200E-03 4.30200E-03 

SBDS3 

A 2.97000E-04 2.93000E-04 2.91000E-04 2.86000E-04 2.75000E-04 

B 7.31000E-04 7.51000E-04 7.21000E-04 3.81000E-04 2.24000E-04 

C 1.50700E-03 6.52000E-04 5.11000E-04 9.74410E-04 6.96864E-04 

D 1.60300E-03 1.56300E-03 1.51400E-03 1.52400E-03 1.54100E-03 

SBDS4 

A 2.11138E-04 2.09055E-04 2.09022E-04 2.09002E-04 2.08946E-04 

B 6.08910E-05 6.23224E-05 6.23330E-05 6.23224E-05 6.35603E-05 

C 1.25481E-04 1.10437E-04 1.13763E-04 1.16843E-04 1.16840E-04 

D 4.06000E-04 3.84000E-04 3.81000E-04 3.80000E-04 3.80000E-04 

SBDS6 

A 1.00800E-03 8.17000E-04 3.54000E-04 1.60000E-04 4.34000E-04 

B 1.53000E-04 1.03000E-04 1.26000E-04 1.04000E-04 1.21483E-04 

C 4.14000E-04 4.01671E-04 4.01344E-04 4.28000E-04 2.34880E-04 

D 2.54000E-04 2.16000E-04 1.97000E-04 1.85000E-04 8.74530E-05 

SBDS9 

A 9.04430E-02 9.04440E-02 9.04440E-02 9.04440E-02 9.04440E-02 

B 2.21914E-05 2.20646E-05 2.21172E-05 2.21087E-05 2.21087E-05 

C 4.51944E-05 4.51615E-05 4.49053E-05 4.48180E-05 4.47060E-05 

D 3.51792E-05 3.41134E-05 3.40980E-05 3.35330E-05 3.35330E-05 

SBDS10 

A 2.34000E-04 2.85000E-04 2.76000E-04 2.72000E-04 2.76000E-04 

B 4.03840E-05 4.03361E-05 3.98230E-05 3.98158E-05 3.98230E-05 

C 5.37473E-05 5.34101E-05 5.34009E-05 5.36361E-05 5.36107E-05 

D 1.21000E-04 1.20000E-04 1.20000E-04 1.16000E-04 1.16000E-04 

 

 

 

 

Figure 4. Comparison among 3 type of NNs 
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Table 10. RMSE for FFN, RCN & RBF 

 

 

 

 

Table 11. Comparison between NNs based on time 

 

 

Table 12. Summary for the results which explain the comparison between NNs 

 

 

 

 

 

 

 

VII. Conclusions 

In this research, simple machine-learning approaches were 

applied to predict the daily WTI price for every barrel of crude 

oil in USD. List of features used as the input factors were 

divided into ten sub-datasets resulting in numerous attribute 

selection algorithms and four data sets with different 

percentages of training and testing. Experiments start with 

six direct prediction models namely isotonic regression, 

SMOreg, Kstar, IBK, ExtraTree, REPTree followed by 

several types of NNs including FFN, RCN and RBF. This 

paper provides successful comparisons of simple prediction 

models, sub- datasets, and different group of training and 

testing data sets 
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Sub-dataset

s 
Data 

RMSE 

FFN RCN RBF 

SBDS1 

A 2.280E-03 1.237E-02 2.613E-03 

B 3.606E-03 1.994E-02 1.521E-03 

C 4.494E-03 1.994E-02 1.677E-03 

D 4.669E-03 1.956E-02 1.377E-03 

SBDS2 
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D 6.181E-03 4.065E-03 1.463E-02 
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C 5.568E-02 4.009E-03 5.396E-03 

D 1.421E-02 2.889E-03 8.677E-03 

SBDS4 

A 2.775E-03 2.539E-03 5.295E-03 

B 2.490E-03 1.951E-03 2.423E-03 
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D 3.114E-03 3.007E-03 4.344E-03 

SBDS6 

A 1.138E-02 2.300E-03 4.632E-03 

B 2.569E-03 3.285E-03 3.166E-03 

C 4.615E-03 5.015E-03 3.657E-03 

D 1.024E-02 4.243E-03 2.085E-03 

SBDS9 

A 2.898E-03 4.959E-03 1.563E-03 

B 2.408E-03 4.078E-03 1.291E-03 

C 4.461E-03 1.020E-02 1.596E-03 

D 9.000E-02 6.941E-03 1.459E-03 

SBDS10 

A 1.597E-02 5.769E-03 5.598E-03 

B 4.359E-03 3.764E-03 1.960E-03 

C 1.134E-02 7.592E-03 1.744E-03 

D 1.493E-01 4.628E-03 2.398E-03 

Sub-dataset

s 
Data 

TIME 

FFN RCN RBF 

SBDS1 

A 00:03:20 00.04.54 00:00:20 

B 00:02:53 00.04.04 00:00:17 

C 00:01:50 00.03.23 00:00:14 

D 00:01:24 00.03.21 00:00:13 

SBDS2 

A 00:13:33 00.06.57 00.00.34 

B 00:13:29 00.06.42 00.00.19 

C 00:12:52 00.05.27 00.00.17 

D 00:11:40 00.04:35 00:00:16 

SBDS3 

A 00:03:53 00:05:00 00:00:28 

B 00:03:45 00:04:30 00:00:25 

C 00:04:15 00:03:53 00:00:21 

D 00:02:48 00:03:15 00:00:20 

SBDS4 

A 00:03:32 00:04:19  00:00:27 

B 00:02:31 00:03:49  00:00:24 

C 00:02:18 00:03:30  00:00:20 

D 00:02:14 00:03:11 00:00:19 

SBDS6 

A 00:03:39 00:04:28 00:00:28 

B 00:03:30 00:04:05 00:00:24 

C 00:03:14 00:03:06 00:00:21 

D 00:02:39 00:03:04 00:00:19 

SBDS9 

A 00:01:58 00:04:38 00:00:28 

B 00:01:29 00:04:05 00:00:24 

C 00:00:47 00:03:43 00:00:21 

D 00:00:22 00:03:10 00:00:19 

SBDS10 

A 00:02:01 00:04:49 00:00:26 

B 00:01:15 00:04:22 00:00:24 

C 00:01:38 00:03:09 00:00:21 

D 00:00:32 00:02:46 00:00:19 

Prediction Model Data MAE RMSE Sub-dataset Time 

FFN A 3.84294E-05 2.280E-03 SBDS1 00:03:20 

RCN B 3.94114E-05 2.300E-03 SBDS6 00:04:05 

RBF B 2.20646E-05 1.291E-03 SBDS9 00:00:24 
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