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Abstract: The untimed power failure is one of major issues 

confronting the successful commercialization of battery powered 

electric cars. So, an intelligent model predictive controller which 

adaptively schedules the load according to the predicted 

remaining charge of the Electric Vehicles(EV) battery saves the 

energy content of the battery and ensures the safe state of the 

Electric Vehicle. The most important part of the model 

predictive controller is the accurate online estimation of the 

battery state of charge using an area and time efficient 

methodology. In this paper the authors proposes and 

implements an efficient yet less computationally intensive 

weighted mix estimation method, that combines the enhanced 

coulomb counting, adaptive battery model and the Open Circuit 

Voltage(OCV) method. The battery model parameters are tuned 

adaptively as the battery discharges and the tuned battery model 

is used by the weighted mix estimator (WME) to estimate the 

SOC of the battery. Due to adaptive nature of battery model 

used, WME serves as a robust methodology for online SOC 

estimation of batteries powering dynamic systems like  Battery 

Electric Vehicles. A comparative analysis of WME has been 

facilitated with battery model and coulomb counting method for 

static and dynamic load profiles. It was found that the SOC 

estimated by WME was accurate and reliable, as it tracks SOC 

in all discharge phases of the battery under arduous conditions. 

Further the controller proactively optimizes the constrained 

battery energy by varying the power delivered to the noncritical 

loads and supports critical loads as per demand. 

 
Keywords: FPGA, Online SOC, load scheduling, battery model, 

Mix estimation. 

I. Introduction 

Limited energy resources in nature often require the end user 

to optimize the utilization of resources for achievement of 

goal. Battery power is a classic example of such constrained 

resource. So we need an efficient strategy for the proper 

utilization of this constrained energy source. This factor 

becomes more prominent in the case of electric car where the 

entire energy for driving is rendered from the constrained 

energy source namely battery. 

Optimum battery management strategy is probably the 

most important technical step which present research of 

Battery powered Electric Vehicles (BEVs) lacks [1]. The 

primary requirement for battery management strategy is an 

accurate, robust and online state of charge (SOC) estimation 

of the battery pack in electric vehicles. Accuracy and 

Robustness of SOC estimation of battery is of prime 

importance as load in an electric vehicle is random depending 

on many unknown factors like surface profile, traffic 

conditions, driver instincts etc thus making the battery state 

stochastic. 

Accurate online SOC estimation aids in applying proper 

optimization for extending the drive cycle of the electric 

vehicle and ensures safe and reliable journey. An imprecise 

SOC estimate may often affect the longevity of the battery as 

it leads to over/undercharging of the battery. This in turn 

deteriorates the performance and reliability of the of the 

electric vehicle battery. The SOC estimation forms the basis 

for extracting other parameters of the EV battery such as peak 

power capability, state of health and the remaining useful 

lifetime of the battery. The drift in the battery characteristics 

will create an ”out of balance state” in the serially connected 

battery packs where accurate cell balancing maintains the 

lifetime of the battery pack.[2]. SOC is the basic parameter 

which is used in this process of cell balancing where we boost 

the less charged battery and buck the batteries with high SOC. 

Many techniques have been developed in the past for state 

of charge estimation of batteries. The most commonly used 

are the coulomb counting method (current integration) and its 

enhanced variants [2]-[3].The method utilizes simple current 

integration for estimating the remaining charge from the 

nominal capacity of the battery. But the method has many 

presumptions like constant discharge current, controlled 

temperature and rated nominal capacity which seldom occurs 

in real world. As a result the estimated value drifts away from 

the real value and thus requires frequent recalibration. The 

dynamic electric circuit battery models such as Rint model, 

RC model, Thevenin’s model, PNGV model and  a dual 

polarization models [4]-[6] which simulate the real high 

power Li-ion battery characteristics such as electrochemical 

polarization, charge diffusion and concentration polarization 

has been proposed.But the complexity of the model increases 
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as the drift in battery characteristics due to aging, 

temperature variations and SOC variations are 

accounted, vice versa if the model complexity is less the 

accuracy is reduced drastically.  

An ANN (artificial neural network) consisting of various 

internal nodes and layers were also used in the past for SOC 

estimation. A typical simple neural network consists of an 

input layer, a hidden layer and an output layer. Depending on 

the complexity of the problem the number of nodes in each 

layer can be adjusted. In [7] two NNs were used of which the 

first predicted the remaining charge and remaining time of 

operation in the current discharge cycle  adaptively while the 

second NN updated the parameters due to temperature 

variations ,manufacturing variations, aging effects etc.. 

Support Vector machines (SVM) [8]  for the remaining 

charge estimation as a kernel based method. SVM projects the 

original nonlinear problems in lower dimension to linear 

problem in higher dimension. Hansen and Wang [8] predicted 

the empirical SOC from current, voltage, previous SOC data 

and voltage fluctuation. The disadvantage of the method is the 

fine tuning of empirical parameters (constant C and error tube 

€) for accurate estimation which is time consuming. 

Kalman filter and its nonlinear variants EKF and 

UKF[9]-[11] are a powerful tool for state estimation of the 

systems which requires a fairly accurate battery model and 

battery data feedback to “predict” and “correct” upon the 

current states.. An FPGA based real-time state of charge 

estimator is described in [12] utilizing an adaptive Kalman 

filter. However practical implementation of these systems in 

real time systems includes heavy computational overhead and 

huge memory requirement. This led to hybrid methods for 

SOC estimation which aims to improve the net accuracy by 

integrating the advantages of the individual estimators 

[11],[13]-18], use of mixed estimators [11],[13]-14], use of 

adaptive average estimator [15] and use of hybrid data fusion 

framework [16].  

In this paper the authors have proposed and implemented a 

new SOC estimation method viz. Weighted Mix estimation 

(WME) which combines the open circuit voltage(OCV) 

method, Enhanced coulomb counting method and the 

adaptive battery model to estimate the online SOC of the 

battery accurately. The proposed estimation technique 

improves the estimation accuracy of the enhanced coulomb 

counter designed by the authors in [2] with minimal area and 

time complexity. Subsequently a model predictive controller 

based on WME is implemented which dynamically allocates 

the load according to the predicted SOC data.  

The highly fluctuating load profiles demands for fast and 

concurrent computational capabilities thus making FPGAs the 

prime contender [19]-[20]. The   implementation of such 

controller for dynamic power management using a 

microcontroller or microprocessor is not suitable in case of 

electric cars as high-speed data acquisition and processing is 

the basic requirement of the system. FPGA and Application 

Specific Integrated Circuits (ASIC) are possible solutions to 

fulfill the hardware requirements for implementation of such 

control strategy. A wide variety of custom made FPGA 

development boards specifically designed for automobile 

applications from Xilinx and Altera helps in fast 

reconfiguration of logic design and reduces the time to 

market. 

The paper is organized as follows Section 2 explains the 

experimental setup. Section 3 gives detailed description of 

enhanced coulomb counting method. In Section 4 dynamic 

battery modeling and parameter estimation has been 

explained. Section 5 describes the Weighted Mix Estimation 

(WME) methodology for SOC estimation. The comparison of 

different SOC estimation methodology with the proposed 

SOC estimation methodology and load scheduling based 

runtime extension strategy is presented in section 6 under 

result and discussion followed by the conclusion in section 7 

and acknowledgement in section 8. 

II. Experimental Set up 

The block diagram of experimental set up for implementation 

of WME method is given in Fig. 1. It consists of 12 volts 1.1 

Ah VRLA lead acid battery used to power electric vehicle,  5 

amperes hall effect current sensor for measuring current of 

battery and a voltage buffer circuit. The current sensor output 

and the battery terminal voltage were fed to the ADC 

terminals for data acquisition. The battery charging set up 

consists of an Agilent E3633A programmable DC power 

supply with constant voltage and constant current modes and 

a 60 MHz Tektronix TDS 1002B two channel digital storage 

oscilloscope. 

High-speed 12-bit ADC AD7891 in parallel mode has been 

used for analog to digital conversion, which is interfaced with 

the Xilinx Spartan 3A FPGA, where the controller and data 

acquisition system is implemented. The RS 232 interface 

using MB32231 logic converter IC transfers the data to the 

computer for comparing data obtained with the reference data. 

A TDS 1002B two channel digital storage oscilloscope is used 

signal analysis and design testing. A Matlab based desktop 

simulation unit is used for plotting of the battery data. A 100 

rpm, 42.51 kg-cm geared DC motor and a 12V and 35 watt 

headlight bulb were connected as load to the system.  

 

III. Enhanced coulomb counter 

The proposed methodology aims to improve the accuracy of 

the coulomb counting method by integrating an adaptive 

battery model, thus making the estimator a closed loop 

estimator.  The coulomb counting method takes only current 

as the input from the battery and calculates the SOC based on 

the following equation(1). 

t
SOC(t) = SOC(0) - ( ηI(t).dt / SOC(0))

0
       (1) 

Where SOC(0) is the initial SOC of the battery, SOC(t) is 

SOC at time instant, η is the coulombic efficiency .One of the 

major limitations of the coulomb counting technique is that it 

does not have an estimate of the initial SOC of the battery. 

This problem has been averted here by using the adaptive 

battery model, coupled with OCV-SOC mapping which 

provides better estimate of initial SOC of the battery [18]. The 

coulombic efficiency is the ratio of the energy that can be 

delivered across a load to the amount of energy delivered to 

battery while charging. The range of the coulombic efficiency 

comes in the range [0-1].The coulombic efficiency of the 

VRLA lead acid battery is found out in the offline mode to be 

.91 by discharging the battery in different load conditions.
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Figure 1.Block Diagram of Experimental Setup 

 

As measurement errors and the external noises piles up 

with time, an inaccurate SOC estimation using coulomb 

counting technique is obtained. Thus it is essential to 

accurately sense discharge current of battery. For accurate 

sensing, discharge current was sampled at 244.14Hz. Output 

signal of Hall Effect current sensor is corrupted by external 

noise such as EMI interference and to denoise it an adaptive 

noise filter followed by a low pass filter was implemented. As 

shown in Fig.2, it was observed that the erroneous output of 

the current sensor bears a definite relation with the input to the 

current sensor. The observed relationship was exploited for 

extracting a factor of 1.5 which adaptively refrains the EMI to 

propagate to the output. This method was validated for the full 

range (0 – 5 amperes) of operation of the current sensor. For 

pertaining the computational accuracy of the results, 

functional units for floating-point adder and multiplier was 

implemented in FPGA [21]. 

 

 

Figure 2. Current Sensor Input/Output 

IV. Battery model 

A model should describe the behavior of the system in the 

absence of the actual system. In literature a number of battery 

models are available such as analytical battery model, 

electrochemical model, kinetic model etc. All these models 

have their own advantages and disadvantages. The 

electrochemical model requires numerous battery parameters 

to be known, the electric circuit model is based on look up 

tables which increase the data complexity, the analytical 

model though simple do not take into consideration the 

recovery effect. 

Taking all these facts into consideration, an equivalent 

electric circuit model developed by the Saft battery company 

[7] was used to model the battery. The NRELS advanced 

vehicle simulator (ADVISOR) provides an RC circuit battery 

model in Matlab /Simulink platform which is used to study the 

vehicle performance as well as the battery behavior as they 

pass through different drive cycles. The schematic of the 

resistance –capacitance model is shown in Fig.3.The model 

simulates the performance of the battery to constant current 

(charge or discharge) and dynamic power cycles. 

 

Figure 3. Battery Model. 

The model consists of 2 capacitors and 3 resistors, where 

Cb is a large value capacitance used to model the bulk 

capacitance of the battery, Cc is a small value capacitance 

which models the surface charge of the battery, Rin represents 

the lumped resistance due to battery interconnections, Re and 

Rc is the surface resistance and the end resistance which is 

used to model the dynamic response of the battery on 

connecting load.  

The voltages across the bulk capacitance and surface 

capacitance are denoted as Vb and Vc. These parameters vary 

with aging, temperature and SOC of battery. In the present 

work, study of parameters variations with SOC is only 

considered. The battery parameters Cb and Rin are used to 

model the state of charge of the battery, as the variation in 

these parameters modulates the estimated terminal voltage 

and hence the OCV. The parameters Cc, Rc and Re are used to 
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model the transient behavior of the battery discharged 

through dynamic load. Here V0 is the output terminal 

voltage of the battery, Ib is the current flowing across Cb and 

Ic is the current flowing across Cc. The SOC of the battery 

was estimated from Vb and Vc obtained using equation (2)  to 

equation (9 ) [22]. 

0 in b e bV = IR + I R + V                        (2) 

0 in c c cV = IR + I R + V                        (3) 

The algebraic manipulation yeilds, 

b e c cI (R + R ) = IR + Vc - Vb                  (4) 

Now, 

b b

dVb
I = C

dt
                               (5) 

 

Thus eqn(1.3) can be rearranged  as 

  c

b e c b e c b e c

IRdVb Vb Vs
= - + +

dt C (R + R ) C (R + R ) C (R + R )
(6) 

Similarly 

 c b c

c e c c e c c e c

V V IRdVc
= - + +

dt C (R + R ) C (R + R ) C (R + R )
(7) 

Thus the net state space model of the battery combining the 

output terminal voltage V0  is, 

 

   

.

.

-1 1 -Re

Vb VbCb ( Re + Rc) Cb ( Re + Rc) Cb ( Re + Rc)
= + I

1 -1 Vc -Re
Vc

Cc ( Re + Rc) Cc ( Re + Rc) Cc ( Re + Rc)

VbRc Re ReRc
Vo = + -Rin - I

Vc(Re + Rc) (Re + Rc) ( Re + Rc)

   
                  
     

   

     
     
     

  (8) 

 

The OCV of the battery is modeled by Vb and Vc together 

as shown in equation. Where SOCCb= SOC(Vb) and SOCCc 

=SOC(Vc) [5]. 

 

1
SOC = 20SOC +SOC

CcCb21
 
 

       (9) 

 
Since the weightage of the voltage across the surface 

capacitance is less compared to that of the voltage across the 

bulk capacitance SOC can be considered to have one to one 

mapping with voltage across the bulk capacitance voltage and 

is approximated as the open circuit voltage. 

A. Initial parameter calculation 

The initial parameters of the battery was found out by using 

the OCV test and repeated discharge of the battery by hybrid 

pulsed profile discharge current [8] .The current pulses of 1 .1 

A with duration of 5 seconds were used for discharge. The 

HPPC test was modified for battery electric vehicle by 

repeatedly discharging the battery after specific duration 

instead of alternating between the charging and discharging 

profiles for the test. The initial battery parameters calculated 

for the 12 volts 1.1 Ah VRLA lead acid battery are listed in 

Table.1. Similar experiments were done also for Li-ion 

battery by which the battery parameters for the same were 

obtained. 

Table 1.Initial battery parameters 

Cb Cc Rc Re Rin 

2112F 5.017F .2 ohms .2 ohms .25 ohms 

 

B. Adaptive tuning of battery parameters 

The offline calculated battery parameters are fed to the model 

initially. The battery model takes only current from the battery 

as input and estimates the terminal voltage based on the initial 

battery parameters, but this is an open loop method as actual 

battery terminal voltage is not utilized. Hence the difference 

between estimated terminal voltage from battery model and 

the actual terminal voltage was used to adaptively tune the 

battery parameters in real time. The block schematic for 

adaptive tuning of battery parameters is given in Fig. 4. 

 

Figure 4. Adaptive battery parameter tuning 

The states of the battery ie Vb and Vc are adjusted 

according to the square of difference between the actual 

battery terminal voltage and the model estimated value. The 

hypothesis selected for parameter tuning is the least means 

square algorithm. The LMS algorithm ensures the global 

minima avoiding the possibility of any local minima in the 

tuning process.  

C. OCV to SOC mapping 

Experimentation with the 12 volts 1.1 Ah VRLA lead acid 

battery provides the one to one relation of the OCV to the 

SOC of the battery during the discharge of battery as shown in 

Fig. 5. Similar results were obtained for the 7.4 V ,4.4 Ah Li- 

ion battery pack where the hysteresis effect has been 

discarded in the charging and discharging phase. The self 

discharge of the VRLA lead acid battery was also discarded as 

it is less than 1/20th of the nominal discharge current of the 

battery.  

The battery was open circuited for 2 hours after discharging 

for every 10% of SOC before taking the readings of terminal 

voltage, thus allowing the terminal voltage to replenish back 

to the OCV. In practical electric vehicles open circuiting the 
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battery for 2 hours is not feasible. the battery model discussed 

above can estimate in real-time the OCV of the battery from 

the sampled terminal voltage. Thus obtained OCV is used to 

obtain SOC of the battery via the SOC –OCV mapping.The 

original mapping points were traced by 3 straight lines given 

by equation (10) with 99% confidence using curve fitting 

toolbox of Matlab thus reducing the order of mapped equation 

and computational complexity. 

 
 

Figure 5. Relation between OCV and SOC 

 

 

.4272OCV - 4.596 ,if OCV >= 12.8V

SOC = .7938OCV -9.306 ,if 11.8 < OCV < 12.8

.2486OCV - 2.847 ,if OCV <= 11.8

 
 
 
 
 

  (10) 

V. Proposed Battery State Estimator framework  

A. Battery model based SOC recalibrator 

The weighted mix estimation (WME) method utilizes a data 

fusion model expressed by equation (11) to inculcate the 

advantages of both the Enhanced coulomb counting 

estimation and the battery model based SOC estimation. 

Initially WME gives full trust to the battery model based SOC  

(SOCv) i.e. α=1,  as it can adaptively learn the initial SOC 

from battery terminal voltage and discharge current.  

After initial phase WME increases the trust on coulomb 

counting as it gives better SOC (SOCi) estimate since the 

integral error accumulation is less. Again in the final phase of 

operation of battery the battery dynamics is efficiently 

replicated by the battery model based SOC (SOCv), so the 

weights for SOC estimated by battery model is increased 

iteratively thus tracking the SOC of battery efficiently. Thus, 

by giving adaptive weights to SOCi and SOCv a better 

estimate of the battery SOC can be obtained throughout the 

battery operation stages. 

The weighting factor (α) is defined as a function of state 

variables of battery model. The entire battery operational 

region was divided into sub regions, defined by state 

variables, with each sub region having a definite value of α 

found out by trial and error method.  

SOC = αSOC +(1-α)SOCvnet i
              (11) 

It should also be noted that model is a simplified linear 

model of the actual non linear dynamic battery system under 

specific operation conditions. The model uncertainties along 

with the shift in actual operating conditions may cause a 

change in the state variables which should not occur in actual 

linear time invariant system. 

 

B. Fpga hardware implementation details 

The SOC estimator is implemented in Xilinx Spartan 3A 

FPGA with device configuration XC3S 400 and PQ208 

package and speed grade -4. The implementation details are 

shown in table 3 with a total utilization of 76 % of the total 

resources. An input clock of 4MHz was utilized but the 

implementation had a timing constrain of max frequency of 

14.55MHz. The central part of WME is the 32 states finite 

state machine which has the enhanced coulomb counter 

battery model and the mix estimator implemented [21]. The 

estimated SOC is send to computer by an RS 232 serial 

communication interface. 

A 32 bit floating point adder and multiplier is implemented 

which maintains accurate results. The parallel implementation 

of the adder and multiplier reduces the time overhead in 

execution thus making the real-time systems fast. 

The state diagram of the machine is given by Fig.6. The block 

schematic of the FPGA battery state of charge estimator is 

given in Fig.7. 

 

 

 
Figure 6. State diagram 

 

The timing diagram of the full implementation is shown in 

Fig. 8. 
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Figure 7. WME estimator FPGA block schematic 

 

Figure 8. Main Controller timing diagram 

The state machine shown in Fig. 6 has 12 states with the 

initial state having iteration count reset to 0. When the 

external RESET is low and START is high the state machine 

goes to battery terminal voltage acquisition state and 

subsequently to the terminal current acquisition state. The 

iteration counter increments the count value on each iteration 

and goes further to the coulomb counter based SOC 

estimation state and estimates the terminal voltage from 

battery model subsequently. The battery parameters are 

updated in the parameter updation state based on J(θ), which 

is the mean of the square of difference between measured and 

estimated terminal voltage and further estimates SOC from 

battery model in the next state. If the iteration count is less 

than tuning time the initial SOC is assigned by the battery 

model based value. The state machine further goes to weight 

factor tuning state and subsequently to the WME state where 

the net SOC is estimated. The machine waits in the wait state 

until 131 msec to meet the timing constraints. 

 

Table.2   FPGA Implementation details 
FPGA 

resources 
Total count Utilized 

GCLKs 8 5 

LUTS 3584 2797 

4INPUT 

SLICES 
7168 5407 

IOBS 141 25 

VI. Results and Discussions 

The result section is subdivided into two parts namely the 

state of charge estimation and predictive load scheduling. 

A. State of charge estimation 

For validation the experimental SOC of the battery has been 

calculated via offline calculation. Experimental SOC 

calculation needs the battery to be discharged to a set point 

against similar load conditions as of the execution of 

algorithms and measuring the OCV after resting the battery 

for 2 hours and finally utilizing OCV-SOC mapping discussed 

in section 5 to calculate the SOC of battery at the set point. For 

all results set points were distributed uniformly over the full 

discharge profile of battery as shown in Figs 9, 10.b, 11.b and 

12.b. WME has been compared for accuracy and performance 

with enhanced coulomb counting, adaptive battery model and 

experimental SOC data from battery for four different 

experimental conditions viz. constant load, dynamic load 

profile 1, dynamic load profile 2 and a fictitious drive cycle 

for electric vehicle as shown in Figs.9, 10.a, 11.a, 12.a 

respectively. 

In Fig.9 variations in estimated SOC by battery model 

(SOCv) is due to the online adjustment of battery model 

parameters based on the feedback from measured battery 

terminal voltage as described in section 4.2. It is also 

observable that none of the implemented methods for 

estimation of SOC was able to track exactly the experimental 

SOC during the total discharge profile of battery. Compared 

to the experimental SOC data, both WME and enhanced 
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coulomb counting methods gave more nearby estimate of 

SOC from 100% SOC to 20% SOC region as compared to 

SOC estimate from battery model. But SOC estimated by 

enhanced coulomb counting was more erroneous after 20% 

SOC as compared to SOC estimates given by WME and 

battery model. 

 

 
Figure 9. Constant load  SOC profile 

 

In dynamic load profile 1 shown in Fig. 10 a, battery was 

given discharge pulse of 0.82 amperes. This load profile was 

used to compare the accuracy of SOC estimation by WME 

and other methods when recovery effect of battery comes into 

action. Fig. 10b shows the plots for SOC estimation. 

 

Figure 10 (a). Dynamic load profile 1 

 
Figure 10(b). Dynamic load profile-1 SOC profile 

In dynamic load profile 2 shown in Fig. 11a, battery was 

given discharge pulse of 0.82, 1.5 and 2 amperes. This test is 

designed to excite cell dynamics as much as possible, and to 

investigate how the algorithm performs under complex and 

long lasting cycles. The result shows that the SOC fluctuates 

abruptly because of the varying loads for battery model and 

WME whereas that of coulomb counting is approximately 

linear and its value drifts away at the end of long drive cycle. 

Fig.11b shows the plots for SOC estimation.Fig.12a shows a 

fictitious drive cycle of electric vehicle and Fig. 12b shows 

plots for SOC estimated by WME and other methods. The 

changing amplitude of fluctuations in the SOC profile in the 

different stages of discharge shows that as the SOC of the 

battery changes the internal resistance also changes due to 

drift in chemical characteristics of the anode and cathode 

which comes in line with the findings of the work given in 

[23].The flat SOC-OCV mapping causes the abrupt 

fluctuations in the SOC in the adaptive battery model, which 

requires further filtering. As can be inferred from the figures, 

the amplitude of fluctuation is less that of WME compared to 

adaptive battery model alone. 

 

 

 

Figure 11(a). Dynamic  load profile 2 

 

 
 

Figure 11(b).Dynamic profile-2 SOC profile 
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Figure 12(a). Fictious drive cycle current profile 

 

Figure 12(b).Fictious drive cycle SOC profile 

Fig.13 shows the plot for root mean square error (RMSE) of 

methods for different experimental conditions. It can be 

observed from this figure that AWME has least RMSE in all 

cases except for constant load condition where enhanced 

coulomb counting has the least error. Enhanced coulomb 

counting method has RMSE varying from 0.02 to 0.06 while 

for WME variation was only from .0185 to .03594 under 

different experiment conditions. Thus it is evident that WME 

method gives the closest estimate of SOC to experimental 

SOC data for the battery at all levels of SOC and for all 

discharge profiles. 

 

 

                  Figure 13. RMSE for all  test conditions 

B. Predictive load scheduling 

The predictive load scheduling experimentation was 

implemented using a 100 rpm, 42.51 kg-cm geared DC motor 

and a 12V, 35 watt headlight bulb. A 7.4 V Li-ion battery was 

used for the above said experiment. The FPGA based 

controller controls the power delivered to the loads through an 

L298N Driver IC. 

The speed of the DC motor and the load current in the other 

loads (headlight) of the electric car can be varied by varying 

the pulse width of the supply to these loads. Thus varying the 

pulse width applied to various loads is used to control the total 

load power delivered from the battery. Certain preset SOC 

points are set by the controller below which the controller 

reduces the total power drawn from the battery. The SOC 

estimated from SOC is used to predict the approximate SOC 

after 10 seconds based on the past load behavior. When the 

predicted battery SOC decreases, and reaches the preset SOC 

points the pulse width of the non critical loads viz. headlights, 

horn etc are reduced so that the speed of the DC motor is 

maintained and the car runs for a longer period of the time. 

Here the predicted SOC based control is implemented, which 

retains critical battery energy from dissipating to non-critical 

loads. 

The pulse width control is done in the PWM controller 

block, which consists of 2 sub modules given in Fig.14, 

namely the Master controller and the Slave controller. The 

Master controller takes encoder input, Predicted SOC and 

Preset SOC points as inputs and sets a normalized value to the 

output register. The Slave controller generates a pulse whose 

net amplitude equals the normalized value set by the Master 

Controller. Each load has a separate register for control by 

which the net power to the load in the car can be controlled. 

The proportional integral controller implemented to maintain 

the constant speed of the DC motor given by equation (12). 

                    Figure 14. PWM Controller Block Schematic. 

        p i
V = K *e n + K * e n + e n -1  + e n - 2    (12) 

Where V=velocity, e(n)=difference between desired speed  

and the current speed (n-k)= difference between desired speed  

and the speed at (n-k)
th

 time instant. The tuned value of the 

proportional constant and integral constants are Kp = 2 and Ki 

= 4. 

The SOC prediction based control action duration of 

147.656 msec. was obtained. The predictive controller action 

was taken 9.852 seconds before the actual occurrence of the 

event. The battery terminal voltage corresponding to the 

controller action is shown in Fig.15. The figure clearly shows 

that the terminal voltage of the battery increases slightly at the 

controller action points. This increases the run time of the 

battery for critical loads. The battery utilizes recovery effect at 

the control action points as the current drawn from the battery 

is reduced, thus increasing the runtime of the battery. The PI 

controller implemented maintains the constant speed of the 

DC motor throughout the battery operation time. 
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Figure 15. Terminal Voltage profile during Controller    

Action. 

VII. Conclusion 

This work proposes a strategy for an intelligent dynamic 

power management which can be utilized in Electric Vehicles. 

The following has been inferred from the above results 

1) As shown in Fig. 13  WME gives best results for SOC 

estimation in comparison with enhanced coulomb counting 

and adaptive battery model, especially under dynamic load 

profiles which is the real time scenario for any battery 

operated device including EV’s, where peak discharge current 

can momentarily rise above the rated capacity of battery 

(dynamic load profile 2).  

2) WME would be ideal for battery powered electric 

vehicles where the load fluctuations occur in the range of 

±5C, but in the case of hybrid electric vehicles it will be 

erroneous as the load fluctuations will be of the order of ±20C 

due to the frequent charging and discharging of the battery 

[24] . 

3) The computational complexity of the above method is 

much lower than present state of art of SOC estimation 

methodologies.  

4) The root mean square error for WME is found to be 

lower than 0.05 under all test condition as shown in figure 13. 

 5) The estimation based predictive load control as shown 

in Figure 15 has been also implemented in FPGA; The parallel 

execution in FPGA makes it an excellent platform for the 

implementation of predictive controller in real time, since 

both sensing and processing of the data can occur 

simultaneously. The figure clearly shows that the terminal 

voltage of the battery increases slightly at the controller action 

points. This increases the run time of the battery for critical 

loads.  

Future aim of the work is implement the predictive load 

controller in actual electric vehicles. 
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