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Abstract—This article describes a novel routing protocol for
mobile agents in wireless sensor networks. Protocol was influ-
enced with some specific needs of agents, such as agent mobility.
Agent platform should select the node where will be agent placed
automatically. Therefore we propose to use vague addressing
instead of exact addressing. Agent selects a few parameters such
as target area or sensors that are necessary for work and platform
will move the agent to best node itself.
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I. INTRODUCTION

Wireless sensor networks are used in various environments
and we can track efforts to bring mobile agents into such
decentralized platform. Each node in the wireless sensor
network contains its own micro-controller, its own source of
energy (battery). Node can sense surrounding environment and
is able to communicate with its neighbors. Required properties
of an agent by Wooldridge [10] are to be autonomous, reactive,
proactive and to have social abilities. We can see that wireless
sensor networks can benefit from mutli-agent aspects. Each
node can be autonomous since it has its own micro-controller,
it can communicate so the agent placed on such node can
have some social abilities and it can react on changes in the
environment since it has sensors, which sense outside changes.

There are many multi-agent platforms for wireless sensor
networks such as Agilla [1], AFME [2] or HERA [3]. There
are many other platforms but the main weakness of all of
them is the communication between two nodes, which are not
direct neighbors. Such communication is called multi-hop and
we have to use some routing protocol to deliver a message
between two distant nodes. For example Agilla uses simple
geo-routing algorithm that we will describe in next section.

As not many of nowadays agent platforms focus on multi-
hop communication, we can state that none of them focuses
on agent migration and agent placement in any details. Our
WSageNt platform [4],[5] provides services, that will assign
the best node for agent’s work automatically [13]. WSageNt
does not use exact addressing of nodes, which is used by
other platforms. Exact addressing can limit agent stay in the
network. Reasons why it is so, will be described later. We
rather use vague addressing in the form: ”Move me into

the area, which is 100 meters north-east, where I will need
temperature sensor for my work”. Such agent migration is
demonstrated on Fig. 1. Agent selects desired destination area
and our platform chooses the best node for agent stay from
the candidates in this area.

Fig. 1. Demonstration of agent migration with vague addressing.

This paper focuses mainly on the process of assigning the
best node for agent stay. The assigning process is divided into
two stages:

1) Finding the target area desired by an agent.
2) Selecting the best node in the target area for agent work.
Therefore the first part of this paper is dedicated to process

of finding the target area. We will describe geo-routing algo-
rithms and we will sketch out modifications to the existing
algorithm that are necessary for our purposes. Second part of
this paper describes the process of selecting best candidate
in the target area. We use trust between neighbors and we
will demonstrate how the misbehavior of some node can be
detected. This paper contains also demonstration of how the
agent selects the contexts that are important for its work and
what influences decision process.

II. GEO-ROUTING ALGORITHMS

Geo-routing algorithms work with an idea not to work with
an address burned in its radio module, but with a set of
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coordinates that identifies a geographic position of node in the
network. We usually work with 2 coordinates. For example the
Agilla uses static m × n grid and nodes are addressed with
two integers. Agilla platform expects that nodes are aligned
into the regular 2D grid and nodes are able to communicate
with its top, bottom, right, left and diagonal neighbors. Fig. 2
shows how the packet from a node [4, 4] is retransmitted to a
node [1, 1]. The packet travels step by step to a neighbor that
is closest (geographically) to the destination address.

Fig. 2. Greedy variant of geo-routing algorithm used in Agilla.

We have to mention that the multi hop communication can
play a significant role for agent stay in the network. Agent
should have the ability to be mobile and there is also the
possibility that the agent will have to visit many nodes for its
work. In the traditional point of view, we have to know exact
address of destination to be able to deliver the message. All
of the nowadays multi-agent platform uses exact addressing,
which can limit the stay of agent in the network. Fig. 3 shows
what could happen, when an agent traverses through network
for a long time. Lets say that agent’s work is measuring of
data on the edges of some rectangle. The agent pseudo-code
to travel first edge would look like:

x, y = 1;
(for ;x<height; x++)
{

do_something();
move_to_node(x+1);

}

Such simple pseudo-code could have troubles when
we use exact addressing of nodes. The operation
move_to_node(x+1) could fail. One reason could
be that destination node is out of battery or it has another
problem. Another problem could arise when the network
is irregular. We can imagine such situation when nodes
are dropped from plane. The algorithm expects that the
destination node exists, but such expectation could not be
valid. The pseudo-code of the agent has to deal with such
situation when we use exact addressing. Therefore the size
of code will increase. This could be a problem because the
agent has to run on nodes with very limited resources. For an
example on MICAz nodes we have only 4kB of RAM that
has to be shared between an agent platform and the agent
itself.

The agent code is usually stored in RAM memory (better
performance of interpretation) and therefore it could cause

Fig. 3. Demonstration of problems when using exact addressing.

that the agent will not fit into the limited size of memory.
We rather implemented such solution directly in the WSageNt
platform. The code that deals with such problems is then
stored in ROM memory of node, which is considerably larger
(128kB at MICAz). Another reason to do so is the fact that
this problem solving mechanism would be a redundant part of
many agents we send to the network. Our solution also selects
the destination node, which should be best for agent’s work.

III. TRAVEL TO THE DESTINATION AREA

The first stage of the assigning process is to travel to the
destination area. Our algorithm is based on GPSR algorithm
[8], with modified final part. GPSR is similar to the greedy
variant of geo-routing algorithm used in Agilla. Agilla plat-
form expects that nodes are placed in regular grid of the size
m× n. Main constraints of Agilla platform are:

• Network has to have regular rectangular shape.
• Count of nodes can not be prime number, otherwise we

have line topology.
• Each neigbour to the node has to have its coordinates

[x± 1, y ± 1].
• Size of the network is static and it is set when we build

from the source code.
• There can not be holes in the network.

We will discuss two main constraints of the Agilla platform.
Conclusion of first four constraints is that Agilla platform
could be used in laboratory environment, but we could have
problems to deploy our nodes in real outside environment.
We have time to place our nodes in regular 2D grid and we
also know what type of agent we will send to the network to
test specific example. We can set coordinates to each node at
the build time and place them to the expected location. These
constrains can limit us in deployment to real environment. We
are not able to add one node to the network. We have to place
whole line (row or column) and we have to also recompile
platform with new m × n variables and reload all nodes. It
can take a serious amount of time to do that.

The biggest issue is last constrain. Greedy variant of geo-
routing algorithm has trouble to work properly when there
are holes in the network. Aligning nodes to regular 2D grid
without holes could be problematic in the outside environment.
We have to also consider that some node runs out of battery or
it is damaged. This also create a hole in the network. In real
applications we see such events frequently. Fig. 4 demonstrates
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Fig. 4. Problems with greedy variant of geo-routing algorithm used in Agilla.

a problem with greedy variant of geo-routing algorithm, which
causes that packet can not be routed.

The node [4, 4] wants to deliver some data to the node
[1, 1]. Packet is then transmitted to the node [3, 3], which is
closest node to the destination. Distances of all nodes to the
destination are in the table I. Since we are now located at
node [3, 3] it has to select a node from its neigbours, which is
geographically closest to the destination and which is closer to
the destination than node [3, 3] itself. There does not exist any
eligible neigbour to which we could route a packet. Algorithm
is then stuck in local optimum and can not continue to deliver
data to destination node.

y \ x 1 2 3 4

4 3
√
10 ' 3.162

√
13 ' 3.606

√
18 ' 4.243

3 2 -
√
8 ' 2.828

√
13 ' 3.606

2 1 - -
√
10 ' 3.162

1 0 1 2 3

TABLE I
DISTANCE OF NODES TO THE DESTINATION NODE [1, 1].

GPSR algorithm tries to solve such problem of holes (space
without nodes on the path to the destination) in the network
with the idea to go around them on the edge of hole. GPSR
works in two modes:

1) Use greedy variant to route packet.
2) Go around edge of hole.

Algorithm switches from mode 1 to mode 2 in the moment it
is stuck in local optimum. It also note coordinates of node (we
will label it as M0) where such switch has been done. It help
us to create a virtual trajectory from problematic node to the
destination node. With this trajectory we are able to detect a
situation that we successfully passed a hole and we can switch
back to the first mode. In the second mode we use the right
hand rule [9] to go around a hole, which is demonstrated on
Fig. 5. Every node that receive a packet to forward will route
it to its first neighbour counterclockwise about itself. The hole
is always on the right side of the edge (directed from source
to destination). If we apply this rule n times we should get
back to the starting point and create a face around such hole.

When we are stuck at the node M0 we select first neighbour
counterclockwise about the vector destination → M0. Then
we continue using right-hand rule until we find target area.

Fig. 5. The right-hand rule (interior of the triangle). x receives a packet
from y, and forwards it to its first neighbour counterclockwise about itself, z.
[9]

A. Planarized graphs

Authors of GPSR algorithm noticed a problem that can
occur in wireless sensor network. There can occur two or more
edges that are crossing themselves. Such crossing edges can
cause that algorithm does not create a face around the hole.
The problem is demonstrated on Fig. 6. On this example we
see that algorithm missed to visit a node v and it creates a
cycle x → u → z → w → u → x, which is not valid. If we
remove these crossing edges x ↔ u and w ↔ z algorithm
starts to work properly. A graph, where no two edges cross is
known as planar [9].

Fig. 6. A network with crossing edges. Starting from x to u, the right-hand
rule gives the tour: x → u → z → w → u → x. [9]

Relative Neighbourhood Graph (RNG) [11] is one of the
planar graphs used in many disciplines. There exist an edge
between u and v if and only if:

∀w 6= u, v : d(u, v) ≤ max[d(u,w), d(v, w)] (1)

On Fig. 7 is demonstrated such rule defining if edge exist in
RNG. We check if there is no witness w between two nodes
u, v and if there is any such node we remove an edge u↔ v
from the graph. If we remove every edge that does not satisfy
rule defined with equation 1 we create a RNG. It is important
that such procedure can be done with each node separately in
its local neighbourhood table. It is also proved that it does not
disconnect the network [9].
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Fig. 7. The RNG graph. Edge u ↔ v exists if there is no witness w in the
shaded area. [9]

Each node can compute if link to some neighbour is part of
RNG and it note such information to the neighbourhood table.
GPSR algorithm then use all paths in the first mode (greedy
mode), while it uses reduced number of paths from RNG to
route in second mode.

B. Decision node in the target area

GPSR algorithm uses the exact addressing and therefore
it has problem, when destination node does not exist. We
modified the final part in the way that the node closest to
the destination address is selected as a decision node. The
goal of the decision node (DN) is then to determine, which
node is the best for an agent stay. The next section IV of this
paper will deal with the second stage of the assigning process,
which is called the decision process.

We discus a problem of reaching proper decision node now.
We will start with basic and most ideal example that is on Fig.
8.

Fig. 8. Ideal situation in final stage of modified GPSR algorithm. We can
create a triangle from 3 neighbours. Destination point is inside of this triangle.

Destination that agent wish to visit is marked with cross.
Target area is then labelled with dashed circle. Packet reach
a node that is inside the target area. Such node pretend itself
to be a candidate for decision node DN. Node has to check if
it has labelled itself as DN properly. It is labelled properly if
and only if:

1) It is closest one to the destination from all nodes in its
neighbourhood table.

2) There exist at least two neighbours of labelled DN such
as that coordinates of destination are within a triangle

created with these 3 nodes.
Every node that mark itself as a candidate for DN has to

check these two conditions and pass this test to become DN.
If first condition is not met we just forward packet to the
neighbour which is closest one to the destination. Such node
mark itself as candidate for DN and check these two conditions
again.

If second condition is not met it means that destination
is located inside some hole. Such situation needs a special
handling that we have to discuss.

C. Destination inside a hole

Since we have detected that the destination point is inside
some hole there exists a possibility that there is some node
from the back side of hole, which is closer to the destination
point. We have to go around such hole, create a cycle and
select from all possible candidates (for DN) one node, which
is closest to the destination point. Because of that our packet
contains field with coordinates of best candidate Mbest that
we have found yet.

We switch to work in second mode of GPSR algorithm.
We mark coordinates of node M0, where we have made this
switch. Fig. 9 demonstrate a situation when we are in second
mode already and we have found first candidate DN1.

Fig. 9. Selecting DN from all candidates. We do one round to select best
candidate. We added third mode, when M0 informs such node that it has
become DN.

DN1 does not met second condition to become proper DN
so we have to continue. We have not have any candidate for
DN yet, so we set Mbest to coordinates of DN1. Algorithm
continue in second mode until it reach node DN2. It compares
stored coordinates of Mbest to itself and when DN2 is closer to
destination it set new value of Mbest. Node DN2 does not met
second condition also. Therefore we continue for searching
DN.

We can detect that one cycle is finished when we receive
such packet at M0 again. We operate in third mode since now.

Node M0 sends a packet to the node Mbest to inform
that it has been selected as proper DN and should initialize
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decision process. We switch to third mode (to reach selected
DN), which is similar to second. Minor difference is that all
candidates for DN compare its coordinates with Mbest and if
they match, they know that they have been selected as proper
DN.

D. Left-hand rule application

Left-hand rule works almost the same as the right-hand rule
except the fact we select first neighbour clockwise about the
vector destination→M0 or Nodeprevious → Nodenow. The
left-hand rule has the same ability to go around the hole as
the right-hand rule, but it goes in opposite direction.

We mention one situation when right-hand rule can fail.
Then it is useful to try to go in opposite direction with use
of left-hand rule. Such situation is generalized version of a
problem ”spike” that we found in [12] and it is shown on
Fig. 10. We send a packet to the left side (node M1) and we
expect that it makes one round around the hole with use of
right-hand rule. We expect that packet will be received from
the right side at node M

′

1 (the node established with use of
left-hand rule to vector destination→M0).

Fig. 10. Right-hand rule do not solve a problem at all times. Sometimes
left-hand rule can solve the problem.

We modified the condition when we drop packet due to
destination is unreachable. When M0 receives packet for the
second time it does not check if the target was found only
(GPSR drops such packet immediately), but it also check if
it came from left side (established as M1 with right-hand
rule about destination → M0) or from the right side (M

′

1

with left-hand rule). If it is received from right side, packet is
dropped. Otherwise we have to continue.

We define fourth mode, which will be the same as the
second except it uses left-hand rule. It is activated when second
mode fails to find destination and M0 receive such information
from M1. If such information is received from other node than
M1 we drop packet. Lets consult the usage of fourth mode

in Fig. 10, which is labelled with arrow denoted with 2. We
forward packet using left-hand rule and since we reach target
area we check if the next skip will bring us out of it. Last node
that is inside target area switch algorithm from fourth mode
to the final fifth mode. It selects Mbest node as DN directly.

We found that holes, which causes that we have to switch to
fourth mode are large. Go around this edge consumes a lot of
energy. Therefore we rather select the best candidate from this
side and we do not bother about the rest. Such protuberance of
network can be found on the outer edge of the network. If we
do not stop algorithm at this moment, it can cause forwarding
packets through all nodes at the outer edge of the network.

Fig. 11. Sometimes right-hand rule do not solve problem and left-hand
rule either. We select second neighbour counterclockwise about the vector
destination → M0 to become a new M0.

Extreme example of protuberance of network is shown on
Fig. 11. Protuberances are on both sides. From the left side we
do not find destination and we are informed about it from M1.
From the right side we do not find destination either and we
are informed about it from M

′

1. We mark the node M2 last,
which has used the mode 2 for the last time. It is the node
that inform M0 about the fact that destination is not reachable
with use of right-hand rule. It is node M1 = M2 last in this
example. In this extreme example we select first neighbour
counterclockwise about the vector M0 →M2 last to become a
new M0. Node that becomes a new M0 is denoted as N . Node
N switch back to second mode and tries to reach destination
from this location.

Such situation does not happen very often, but we must
handle it correctly. Otherwise we drop packets that can be
delivered.

IV. TRUST EVALUATION TO SPECIFIC NODE

In our system, each node evaluates the trust value of their
direct neighbors in a few specified contexts. We denote the
trust value of node [a, b] to the node [x, y] in the specific
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context as τ context[x,y] and it is evaluated from interactions
between nodes. The trust value is evaluated in 4 contexts: data
validity of 3 different sensors τs1[x,y], τ

s2
[x,y], τ

s3
[x,y] and we also

evaluate the link quality between nodes τ link[x,y]. We will follow
with description of how the trust values are evaluated.

A. Sensor context

We make expectation that two close by nodes are placed
at the same environment and data sensed from sensor should
have similar values [7]. Sensed value at specific node from
specific sensor s at the time t is labelled as vals,tnode. Nodes
that we are using have 10-bit ADC converter so the values are
in the range < 0, 1023 >.

Each node [x, y] periodically broadcast measured data from
sensors and neighbors [a, b] that receive such message compare
data from their own sensors to that from received message.
We evaluate such interaction in each sensor context and the
output value will be also in the range < 0, 1023 >. We have
set minimal distance of nodes to be 1 meter and the divisor in
Eq. 2 is then not equal to zero. Maximal 1023 value represents,
that sensed values of nodes [x, y] and [a, b] are exactly same.
Lower values mean that there is difference in sensed values.
Significant difference could be caused with broken sensor. The
interaction at the time t is evaluated as a real number with Eq.
2.

is,t[x,y] = 1023−
abs(vals,t[x,y] − val

s,t
[a,b])

MAX(1, distance([x, y], [a, b]))
(2)

We take particular interactions and we will compute trust
value to all sensor context. We showed how we evaluate
each interaction in previous equation. There could be more
equations how to transform sequence of evaluated interactions
to the trust value.

At the first attempt we have chosen simple mean of all (we
have n interactions in the past) interactions in specific context
as a trust value:

τs[x,y] = µsn =
1

n

n∑
j=1

is,j[x,y]

We have chosen this function because of it can be converted
[6] to sequential algorithm. The main advantage of sequential
algorithm is that we don’t have to store the interaction history.
It is very important in the wireless sensor networks. Each
sensor node has limited amount of memory, so storing whole
interaction would not be possible. It would also influence
the energy consumption of node. Each time we get new
interaction we would have to recount the trust value. Widely
used sequential variant to count simple mean sequentially:

τs[x,y] = µsn =
1

n

n∑
j=1

(is,j[x,y])
2 − (

1

n

n∑
j=1

is,j[x,y])
2

As we can see we have to store only 3 variables (two
summaries and number of interactions) to count this algorithm
sequentially. This aspect to be able to count trust value se-
quentially is very important and significantly reduce resource
consumption. As our first attempt suited our needs we have
found out that our model had problems with some situations.

When some node start its work it has not any problems
usually. All sensors work well at the beginning of its lifetime,
bus as time goes on some sensor can failure. There can be
various reasons why sensor failure. Nodes are usually placed
to outdoor environments, where can occur some water leak,
physical damage or a high temperature can damage a sensor.

The problem of using simple mean to compute trust value is
that it reflects such damages of sensors slowly. If some damage
occurs then trust value of neighbors nodes would be high for
a very long time and decrease slowly. We have decided to
replace simple mean with exponentially-weighted mean [6].
The equation for exponentially-weighted mean is:

τs[x,y] = exp µsn = anis,0[x,y] +

n∑
j=1

a(n−j)(1− a)is,j[x,y]

As we can see, all interactions are weighted. We will
describe sequential variant later. The constant a is the real
number 0 < a < 1 and it affects the weights of interactions.
For our needs, the value of a affects how fast it will forget
old interactions and learn new inputs. Weights wn,j will be:

wn,j =

{
an = a ∗ a(n−1) if j = 0,
a(n−j)(1− a) if 1 ≤ j ≤ n.

In the paper [6] there is a proof that weights are normalized∑n
j=0 wn,j = 1. We recommend to set strictly a < 0.5,

because for a > 0.5 there can be problems for our purposes.
In our situation wn,j < wn,j+1 should be satisfied. In the case
of a > 0.5 there will be:

a ∗ a(n−1) > a(n−1)(1− a)
wn,0 > wn,1

For some small number of interactions it can cause strange
situation in computing trust. For example for 4 samples (n =
3) and a = 0.9 the weights are in the table II:

j 0 1 2 3
w3,j 0.729 0.081 0.09 0.1

TABLE II
WEIGHTS FOR EXPONENTIALLY-WEIGHTED MEAN WITH n = 3.

We can see in the table II, that the first interaction (j = 0)
will have most impact on result. This misbehavior would
have less impact on result as the time goes on and we have
more and more interactions between nodes. There will become
more significant

∑n
j=1 a

(n−j) part of equation. But as we
demonstrated the value a > 0.5 could cause problems at the
early time of trust evaluation.

Exponentially-weighted mean equation can be transformed
to its sequential variant [6] that we use at this time, which will
look like:

exp µs0 := is,0[x,y]

exp µsn := exp µsn−1 + (1− a) ∗ (is,n[x,y] − exp µsn−1)

As we know that values of inputs are in the range <
0, 1023 > then the result will be in the same range also. Then
we have to store only one variable exp µn = τs[x,y], because
of we are able to detect if we have any interaction history
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already. We set exp µsn = −1 at the beginning, which means
we do not have any interaction from the past. We have found
that value of a set around 0.35 suits our needs best.

B. Communication context

Besides of fact we have 3 contexts for 3 different sensors,
we have also the context of communication τ link[x,y] through the
radio. One thing that influence the link quality is the distance
to the neighbor node. But there could be obstacles in the
path of signal from node x to node y. Our nodes support to
detect strength of signal when it receive message. Such value
is named RSSI (Received Signal Strength Indication) and in
the TinyOs it is represented with 16-bit number. We work with
different types of nodes platforms. Radio modules of different
platform could provide such RSSI values in different range.
For example MICAz platform returns values in the range
<FF D2, 00 2B> hexadecimally, while Iris platform that
returns RSSI value in the range <00 00, 00 1C> hexadec-
imally. We normalize such values to the interval < 0, 255 >.
Best link quality is represented with the highest value 255
and worst link quality with a value 0. It is better to normalize
values, because of our WSageNt platform can be loaded to
different type of nodes and the meaning of values remains the
same.

As we presume that nodes are placed to the environment
statically and they do not move in the time, we should take into
account that there could be mobile obstacles that has impact on
RSSI value during the time. We should also note that value of
RSSI is not precise enough and it oscillate around some mean
value. Thus the RSSI value at the first time can be different
to the second time measurement even if the node placement is
statical and so do obstacles on the path. There can occur a very
long time without a communication between two nodes and
because of that one node should initiate some communication
after some period of time. This is done for purpose to find out
if there has not come any mobile obstacle. Each measurement
starts with broadcast to its neighbors to answer back and it will
listen to echoing messages. Therefore our WSageNt platform
store information about their neighbors from sequence of 10
measurements of RSSI value. Simple mean value from the
sequence is computed for and it is attached into the neighbors
table. We just note that we restricted maximal number of nodes
in the neighbors table to 20. TinyOs has to have all variables to
be defined statically. The size of neighbors table has to be set
manually, but for our purposes is maximum of 20 neighbors
enough. The size of table can be changed in the source code.

We label the mean value of last measurement sequence
as rssi µlast. RSSI value is not only one parameter we
use for establishing τ link[x,y]. We take into account latency of
the packet transmission in milliseconds. The exponentially-
weighted mean latency exp µ of the latency is counted only
on successfully transmitted packets.

Other parameter is the level how many of packets has
been transmitted successfully. Packet loss is pretty common in
wireless sensor networks. Input values are then 1, which means
that packet has been transmitted successfully and 0 that there
is a packet loss. Exponentially-weighted mean with a < 0.5

prefer new values over the old one. Thus it is not well suited
for this purpose, because of output values would oscillate too
much. We rather set the a > 0.5, but first n samples are
counted via simple mean. After n samples we start count the
packet loss level with exponentially-weighted mean algorithm.
For value a = 0.9 there is wn,0 < 1

n for n ≥ 34. We have set
value of n = 35, which provides that start phase of counting
level of packet loss should be stabilized. We label the level of
packet loss with loss and its range is < 0, 1 >.

The trust to the link level τ link[x,y] is then computed using Eq.
3.

τ link[x,y] = rssi µlast ∗
1

latency exp µ
∗ loss (3)

If we consider that latency exp µ > 0 we conclude that
value of trust to link is τ link[x,y] ∈< 0, 255 >. We just note
that the time between initiating broadcast sequence to get
rssi µlast should be considerably long. Otherwise it would
consume energy rapidly.

V. SELECTING BEST NODE FOR MOBILE AGENT

In some cases there is important for mobile agent to stay
at selected node for a quite long time. Such stay of agent
at node can consume a lot of energy. Our model is able to
reflect such needs of agent also and select node with most of
energy. We label the remaining energy of node [x, y] at time
t as Energyt[x,y]. For future computation we will need to set:

E[x,y] =
Energynow[x,y]

Energy0[x,y]
(4)

The value E[x,y] represents ratio of left energy to the energy
at the beginning. The range of E[x,y] ∈< 0, 1 >.

We have set distance d[x,y] of node [x, y] from desired lo-
cation of agent previously. Now we set a few other parameters
that will occur in final Eq. 5. First one is the average number
of neighbors nodes and we label it as a avg nb. It is important
parameter, because the higher the number of neighbor is the
more resources it takes to obtain all information about nodes.
The second parameter is the number of hops from node [a, b]
to node [x, y]. It means number of retransmission needed to
route packet from [a, b] to [x, y] and we label it as hops[x,y].
The final Eq. 5 returns value h[x,y] which represent suitability
of node [x, y] for specific agent.

Each agent select set of properties, which will influence the
decision process of agent placement. He has ability to select
what sensors are crucial for its work or if it runs on target
node for a long time and needs a lot of energy. Each agent
initiate its movement with request for placement to the target
area. This request also contains a vector of flags (or attributes)
βf ∈ {0, 1}, where f ∈ {E, link, s1, s2, s3}. Flag set to 1
means crucial aspect in the process of placement decision.
For example if an agent needs sensor 1 and sensor 3 and does
not bother about other contexts, it will set flag βs1 = 1 and
βs3 = 1 and other flags remain set to zero.
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h[x,y] = 1
MAX(0.1,d[x,y])

∗ 1

hopsavg nb

[x,y]

∗

∗
(
E[x,y]

)βE ∗
(
τ link
[x,y]

255

)βlink

∗

∗
(
τs1
[x,y]

1023

)βs1

∗
(
τs2
[x,y]

1023

)βs2

∗
(
τs3
[x,y]

1023

)βs3

(5)

Using Eq. 5 we compute the hnode value for all nodes and
then we try to find the node with maximal value hnode. In
real implementation it would be impossible to maintain trust
values for all nodes in the network. Notice the 1

MAX(0.1,d[x,y])
∗

1

hopsavg nb

[x,y]

part of the equation. As the distance d[x,y] of node

[x, y] from target area increases, the number of hops[x,y]
increases also. These two parameters will limit maximal values
of h[x,y] of distant nodes. We select one of the neighbor nodes
(or the decision node itself) in most cases, so we decided that
real implementation compute hnode value only for neighbors
of decision node.

VI. DECISION PROCESS

Decision process should select the best node in the specified
area to emplace mobile agent. We should select from the
decision node [a, b] and all its neighbors.

In previous section we showed how the node [a, b] is able
to compute the h[x,y] value of its neighbors. The problem
is how to compute value of h[a,b] itself. We presume that
the node [a, b] is able to communicate somehow, so we
do not bother about the τ link[a,b] . Such precondition should be
satisfied, otherwise the node [a, b] would be removed from
neighbor table of its neighbors and could not be selected as a
decision node. The problem could occur, when the ability to
communicate change dramatically during the decision process.
We omit such problem in this article since its occurrence is
very rare and the solution would exceed the scope of this
paper.

On the other hand particular sensor could be broken on the
decision node [a, b]. As a result the node [a, b] has reduced
trust to all neighbors, which sensors work properly. Fig. 12
shows how the target area looks like. We can see also that
all nodes outside of the target area have hopsnode ≥ 2. It
demonstrates how the trust value is reduced when a sensor of
node [a, b] failure. As a demonstration all nodes have constant
input at the specified sensor. The input value is labelled below
the name of each node. Failure of a sensor is simulated with
reading the value 0 from a sensor.

We presume that nodes are started at similar time and have
the same period of broadcast. As the evaluation of interactions
are done in almost the same time, the trust value of node [a, b]
to the node [x, y] is almost identical to the trust value of node
[x, y] to the node [a, b]. There are just slight differences at that
values.

A. Voting mechanism

From the Fig. 12 the node [a, b] is in strange situation. It
does not trust to anybody and nobody trust to it. If we try
to set h[a,b] as a average trust of all neighbor nodes to the

Fig. 12. Trust value of decision node [a, b] to its neighborhood. Decision
node has the sensor failure.

node [a, b] it will not solve anything. All nodes would have
the value hnode too low and similar to decide, which node is
best for the agent.

We rather implemented a vote mechanism that solve such
situation well. The idea is not to compute h[a,b] itself at the
decision node [a, b]. We rather make votes and listen if other
nodes select the decision node as the best candidate.

Decision process is initiated from decision node. As we
mentioned already we vote over the nodes, which are in direct
neighborhood or we select decision node itself. All the nodes
who vote, have to know who are the candidates to vote. On
Fig. 12, there is a node [x4, y3], which is a neighbor to the node
[x3, y3] (it is one of the node, who vote). As the node [x3, y3]
vote, it should filter off all neighbors, which are more than
2 hops away from decision node, including the node [x4, y3].
Therefore the decision node start the process with broadcast
message. This message include the list of candidates (all nodes
in the neighborhood of decision node and the decision node
itself), so all voting nodes know, how to filter its neighbors.

All nodes select its best candidate (from neighbors, who are
in list) and send its proposal to the decision node. Decision
node counts all answers and selects the node with most
proposals as the winner. Winner of the decision process is
informed that it should emplace the agent and it start the
transfer of the agent.

For better demonstration how the voting mechanism work
we have prepared two examples. First one demonstrates the
situation, when a sensor fails at the decision node itself. Fig.
13 represents such situation. For easier reading of Fig. 13
and 14 we simplify the evaluating function of its neighbors to
h[x,y] = τs1[x,y].

Fig. 13 demonstrates the situation, when decision node has
broken sensor. It is represented with reading 0 value from a
sensor. All nodes in the neigbourhood of [a, b], has reduced
trust to the [a, b] in the comparison to other neighbors. For
example for the node [x1, y3] the h[x,y] will be:

[x1, y3]→


h[x2,y3] = 1023− abs(405−435)

1 = 993.0

h[x1,y2] = 1023− abs(390−435)
1 = 978.0

h[a,b] = 1023− abs(0−435)√
2

' 715.409

It is clear, that the best candidate of node [x1, y3] is [x2, y3].
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Fig. 13. Demonstration of vote mechanism. Decision node has sensor failure.

The situation is similar, when other voting nodes select their
best candidates. They rather select other candidate than the
decision node [a, b], because of its reduced trust value.

Lets consider a situation when sensor of decision node reads
proper value. Fig. 14 demonstrate a situation when the decision
node reads similar value from sensor as its neighbors.

Fig. 14. Demonstration of vote mechanism. Sensor of decision node works
properly.

In this example for the node [x1, y3] the h[x,y] will be:

[x1, y3]→


h[x2,y3] = 1023− abs(405−435)

1 = 993.0

h[x1,y2] = 1023− abs(390−435)
1 = 978.0

h[a,b] = 1023− abs(400−435)√
2

' 998.251

The node [a, b] is selected as the best candidate of the node
[x1, y3]. Similar situation happens with most of other voting
nodes.

VII. CONCLUSION

We demonstrated that Agilla platform has a few drawbacks
when we want to use our nodes in the real environment.
We have focused on greedy variant of geo-routing algorithm
that Agilla uses. We have described our modifications to the
original GPSR algorithm, which is superior in the comparison
to greedy variant. Proposed modifications allowed us to use
vague addressing and to reach target area.

There were demonstrated that our voting mechanism suits
our needs to distinguish, if the decision node has broken sensor
or not. We have demonstrated such behavior on simplified
function of h[x,y] = τs1[x,y]. We have mentioned in section
III that the decision node is nearest node to the preferred

location of agent. If we look at Eq. 5, we can conclude that
if the decision node works properly, it should be selected as a
winner of decision process in most cases. It is done because
of the 1

d[x,y]
part of Eq. 5. We demonstrated on example that

problems with the decision node that can influence agent stay
should cause a relocating of agent to some other node.
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