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Abstract: Estimating the number of sources accurately
plays a crucial role in the source localization and di-
rection of arrival (DOA) estimation problems. Source
number estimation has to be performed in a shallow
ocean environment in several applications like coastal
surveillance and harbour defence. Also, it is desirable to
have an array of very short length so as the reduce the
drag force experienced when used along with autonomous
underwater vehicles (AUV). In this paper, the Gerschgorin
disk estimator (GDE) method of source number estimation
in an unbounded medium is extended for operation in a
shallow oceanic waveguide. Classical methods of source
number estimation such as Akaike information criterion
(AIC) and minimum description length (MDL) require (1)
good estimates of the eigenvalues of the spectral correlation
matrix, and (2) the assumption of white Gaussian noise to
be valid. The GDE method does not suffer from these
limitations. A theoretical formulation of the GDE method
in a shallow ocean is presented in this paper for acoustic
vector sensor (AVS) and acoustic pressure sensor (APS)
arrays. Simulation results are then presented considering
different noise models including non-Gaussian and highy
correlated noise to illustrate the advantages of the GDE
method and the superior performance of the AVS array
in a shallow ocean environment.

Keywords: Gerschgorin disk estimator, acoustic vector sen-
sor array, shallow ocean.

I. Introduction
Passive localization of acoustic sources in shallow ocean

is a problem of great interest in applications such as coastal
surveillance and harbour defence. High-resolution direction
of arrival (DOA) estimation algorithms such as MUSIC [1]
and ESPRIT [2], rely on prior knowledge of the number of
sources. It is therefore necessary to have a reliable method
of source number estimation. Classical methods of source
number estimation include the Akaike information criterion
(AIC) method [3], the minimum description length (MDL)
method [4], and several variants derived from them. These
are model-dependent estimators based on the assumption that
noise is Gaussian, and temporally and spatially white. But,
in the ocean environment, ambient noise is often impulsive
[5], [6] and the noise at the sensors of a vertical array is
correlated [7]. Moreover, these methods require knowledge of
the eigenvalues of the array data covariance matrix. The accu-
racy of eigenvalue estimates, obtained from a finite number of
snapshots, decreases as the signal-to-noise ratio (SNR) and / or
the sample size (number of snapshots) is reduced. Hence the
AIC and MDL estimators fail to correctly estimate the number
of sources in the ocean in many cases of practical interest.

The Gerschgorin disk estimator (GDE) is a geometrical
technique of source number estimation which was formulated
by Wu et al [8], and developed further by Huang et al [9]. The
GDE is (1) not restricted by the assumption of white Gaussian
noise, and (2) robust to errors in estimation of eigenvalues of
the covariance matrix. The GDE was originally developed for
use with an array of scalar sensors such as acoustic pressure
sensors (APS). This estimator was designated as GDE-P by

Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 1 (2013) pp. 109 -118

© MIR Labs, www.mirlabs.net/jnic/index.html                                                                                                                ___________________________________________________________________________________________________________

Dynamic Publishers, Inc., USA



Mei and Wang [10], who formulated an extended version of
the algorithm called GDE-V for use with an acoustic vector
sensor (AVS) array. An AVS measures acoustic pressure as
well as three orthogonal components of particle velocity at any
given location, and thus it can provide directional information
about a source. In general, an AVS array with a small number
of sensors can achieve better source localization than an APS
array with a larger number of sensors [11], [12], [13]. In
the context of source number estimation, simulation results in
[10] indicate that the performance of GDE-V is significantly
better than that of GDE-P in terms of several performance
measures, viz. probability of correct estimation at low SNR
and/or small sample size, capacity for correct enumeration of a
large number of sources, resolution of closely spaced sources,
and elimination of left-right ambiguity.

The signal model considered in [8], [9], [10] is based on
the assumption that the signal from each source arrives at the
sensor array in the form of a plane wave. This assumption is
not valid in the multi-mode environment of a shallow ocean.
For example, the plane wave assumption leads to biased DOA
estimates in a shallow ocean environment [14]. Therefore, the
GDE-P and GDE-V methods cannot be used in their present
form for source number estimation in a shallow ocean. In this
paper, we have extended the GDE-P and GDE-V algorithms to
a shallow ocean environment. In a shallow range-independent
ocean, the acoustic pressure as well as each component of
particle velocity can be expressed as the sum of a discrete set
of normal modes [13], [15]. The AVS array data model for
shallow ocean developed in [13] has been used in this paper.
Uniform horizontal linear array (HLA) and vertical linear array
(VLA) configurations have been considered. According to the
noise model presented in [13], noise may be assumed to be
spatially uncorrelated in the case of HLA if the inter-sensor
distance is greater than or equal to half-wavelength. But noise
is spatially correlated in the case of VLA. We have applied
the GDE-P and GDE-V algorithms to the APS and AVS array
data respectively, and shown that the performance of an AVS
array is significantly better than that of an APS array. It is also
shown that the performance of an HLA is much better than
that of a VLA. We have also compared the performance of
the GDE-V method with the AIC and MDL methods for an
AVS array, and shown that (1) in white noise, the performance
of GDE-V is better than that of the other algorithms at low
SNR and/or small sample size, and (2) GDE-V is robust to
temporal/spatial correlation of noise unlike the AIC and MDL
algorithms. A part of this work was presented at the 12th

International Conference on System Design and Applications
ISDA 2012 [16].

The outline of the paper is as follows. In Section II, we
present a summary of the AVS and APS array measurement
models for a horizontally stratified, range-independent shallow
ocean. A review of the GDE algorithm is presented in Section
III. Simulation results presented in Section IV are obtained by
applying the GDE-P and GDE-V algorithms to the data models
described in Section II. Section V concludes the paper.

II. Data Models For AVS and APS Array
in Shallow Ocean
A. Signal Model

The ocean is modeled as a range-independent channel
having a water column of depth h, density ρ, and sound speed
c over a fluid half-space of density ρb and sound speed cb.
We consider HLA and VLA configurations of a uniform N -
sensor AVS array with inter-sensor spacing d. Let the depth
of the nth sensor be denoted by zn, n = 1, . . . , N . We have
zn = z1 for the HLA and zn = z1 + (n − 1)d for the
VLA. Let J narrowband sources of center frequency f be
located in the far-field region at range r(j), depth z(j), and
bearing θ(j). In the case of the HLA, the bearing is measured
with respect to the axis of the array. Each AVS measures
acoustic pressure p and three mutually orthogonal components
of particle velocity (vx, vy, vz) in the horizontal (x, y) and
vertical (z) directions. We shall ignore the vertical component
vz since simulation results show that inclusion of vz does not
have a significant effect on the performance of any source
enumeration algorithm. Hence the measurement at each AVS
is considered to be 3-dimensional vector. Using the normal
mode theory of sound propagation, the array signal vector
due to the jth source can be written as the following 3N -
dimensional vector

s(j) = [p(j)
1

√
2ρcv

(j)
x1

√
2ρcv

(j)
y1 . . .

p(j)
N

√
2ρcv

(j)
xN

√
2ρcv

(j)
yN ]T

(1)

for j=1, . . . , J , where p(j)
n , vxn

(j), vyn
(j) denote, respectively,

the complex amplitudes of the acoustic pressure and the (x, y)
components of particle velocity at the nth sensor when a unit-
amplitude signal is transmitted by the jth source. In (1), the
particle velocity components are scaled by the factor

√
2ρc to

maintain dimensional uniformity of the measured quantities
and also to ensure that the three components of noise at an
AVS have equal variance. Expressions for p(j)

n , vxn
(j) and

vyn
(j) are given by [13]

p(j)
n =

M∑
m=1

p(j)
mnΩ(θ(j)), (2)

√
2ρcv(j)
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√

2 cos θ(j)
M∑
m=1

km
k
p(j)
mnΩ(θ(j)), (3)

and

√
2ρcv(j)

yn =
√

2 sin θ(j)
M∑
m=1

km
k
p(j)
mnΩ(θ(j)), (4)

where

p(j)
mn =

2
√

2π

h
Ψm(zn)Ψm(z(j))

eikmr
(j)√

kmr(j)
. (5)

In (2) - (5), Ψm(z) and km denote, respectively, the eigen-
function and wave-number of the mth normal mode of the
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channel at frequency f , M is the total number of modes at
this frequency, k = 2πf

c , and Ω(θ(j)) is defined as

Ω(θ(j)) = ei(n−1)kmd cos θ(j) for HLA, (6a)

Ω(θ(j)) = 1 for VLA. (6b)

Let η(j)(t) be the complex amplitude of the signal transmit-
ted by the jth source at time t. The amplitudes {η(j)(t); j =
1, , J ; t = 1, 2, } are modeled as uncorrelated complex circular
Gaussian random variables with mean E[η(j)(t)] = 0 and
variance E[|η(j)(t)|2] = σ2(j). Define S = [s(1) . . . s(J)], and
ηηη(t) = [η1(t) . . . ηJ(t)]T . The array data vector inclusive of
the received signals from all sources and additive noise can
be written as

y(t) = Sηηη(t) + w(t), (7)

where w(t) is the noise vector.
In the case of an APS array, the vector s(j) defined in (1)

reduces to

s(j) = p(j) , [p
(j)
1 . . . p

(j)
N ] (8)

and the data vector y(t) and the noise vector w(t) reduce to
N -dimensional vectors.

B. Noise Model

It is convenient to express the array noise vector as w(t) =
[wT1 (t) . . .wTN (t)]T , where wn(t) = [wn1(t)wn2(t)wn3(t)]T

denotes the 3-dimensional noise vector at the nth AVS. The
noise is modeled as complex circular with a generalized Gaus-
sian (GG) distribution. The probability density function (PDF)
of a complex circular GG random variable W = W̄+iW̃ with
variance σ2 is given by

fW (w) = fW̄ ,W̃ (w̄, w̃) = B(α) exp (−C(α)|w|α)

= B(α) exp (−C(α)(w̄2 + w̃2)α/2), (9)

where

B(α) =
αΓ(4/α)

8πσ2Γ(2/α)2
,

C(α) =
1

σα

(
Γ(4/α)

Γ(2/α)

)α/2
.

Details of derivation of the expression in (9) are given in
A. The GG distribution, which is Gaussian for α = 2 and
leptokurtic (heavy-tailed) for α < 2, can model a wide variety
of ambient noise environments in the ocean.

For a given time t, the three components of noise at an
AVS are uncorrelated and identically distributed [13]. But the
noise at different sensors is correlated with a depth-dependent
variance. Let the covariance matrix of the noise vector w(t)
be denoted by

Rw = E[w(t)wH(t)] = σ2R0, (10)

where σ2 is the noise variance at the reference depth z1,
and R0 is a 3N × 3N matrix. The spatial correlation decays
rapidly in the horizontal direction, and it can be ignored for

horizontal separations greater than or equal to half-wavelength.
But the vertical spatial correlation between similar components
of noise remains significant even at large distances. Hence, for
an HLA at depth z1, R0 is the 3N × 3N identity matrix:

R0,H = I3N . (11)

For a VLA, the matrix R0 is given by r(z1, zz) . . . r(z1, zN )
...

. . .
...

r(zN , z1) . . . r(zN , zN )

⊗ I3, (12)

where ⊗ denotes the Kronecker product and

r(zk, zn) =

M∑
m=1

Ψm(zk)Ψm(zn)

M∑
m=1

Ψ2
m(z1)

. (13)

It follows from (10), (12) and (13) that the noise variance
at the nth sensor of a VLA is given by

σ2
n = σ2

M∑
m=1

Ψm(zn)

M∑
m=1

Ψ2
m(z1)

(14)

for n = 1, . . . , N .
We consider two models of temporal noise correlation. In

the first model, noise is assumed to be temporally white. In the
second model, noise is assumed to be colored and is modeled
as an AR(1) process.

The SNR for the j-th source is defined as

(SNR)(j) =
σ(j)2p(j)Hp(j)

Nσ2
, for HLA, (15a)

(SNR)(j) =
σ(j)2p(j)Hp(j)

N∑
n=1

σ2

, for VLA. (15b)

This definition of SNR, based only on the acoustic pressure
components of signal and noise, ensures a fair comparison of
the performance of APS and AVS arrays.

The AVS array data covariance matrix is given by

R3N = E[y(t)y(t)H ]. (16)

The true covariance matrix defined in (16) is estimated from
Q snapshots of the data vector as follows:

R̂3N =
1

Q

Q∑
t=1

y(t)y(t)H . (17)

In the case of an APS array, the vector y(t) is N -
dimensional, the covariance matrix is RN and its estimate is
denoted by R̂N .
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III. Gerschgorin Disk Estimator
According to the Gerschgorin disk theorem, the eigenvalues

λ of a square matrix R of dimension N-by-N belong to the
union of N Gerschgorin disks; i.e.,

λ ∈
N⋃
i=1

Oi, (18)

where each Gerschgorin disk Oi is defined in the complex
plane as

Oi : |Z − cii| < ci, (19)

and

ci =

N∑
j=1,j 6=i

|cij |, (20)

in which cij is the element at the i-th row and j-th column
of R. Thus, ith Gerschgorin disk is a circle centred at cii
with radius ci. But, the Gerschgorin theorem cannot be applied
directly to the sample covariance matrix R̂3N to estimate the
number of sources, because the disks are tightly interlaced and
the radii ci are so large that the signal and noise subspaces
cannot be distinguished [8]. To circumvent this problem, a
unitary transformation of the sample covariance matrix has
been proposed [8]. Gerschgorin theorem can be applied to the
transformed matrix since the eigenvalues of the original matrix
are preserved by the unitary transformation.

Let the covariance matrix R̂3N be partitioned as

R̂3N =

[
R̂3(N−1) r

rH b3

]
, (21)

where R̂3(N−1) is the covariance matrix of order 3(N -1)
corresponding to the array formed by the first N − 1 sensors.
An eigen-decomposition of the matrix R̂3(N−1) is carried
out to obtain the matrix U3(N−1)=[e1, e2, . . . , e3(N−1)] that
is formed by the set of unit eigenvectors orthogonal to each
other. Next, the following unitary transformation matrix T is
constructed:

T =

[
U3(N−1) O3

OT
3 I3

]
, (22)

where O3 is an all-zero matrix and I3 is the 3 × 3 identity
matrix. Now, the transformed matrix RT is defined as

RT = THR̂3NT =

[
ΣΣΣ ΓΓΓ

ΓΓΓH B3

]
; (23)

or RT =

λ1 0 . . . 0 Γ11 Γ12 Γ13

0 λ2 . . . 0 Γ21 Γ22 Γ23

...
...

...
...

...
...

...
0 0 . . . λ3(N−1) Γ3(N−1),1 Γ3(N−1),2Γ3(N−1),3

Γ∗11 Γ∗21. . .Γ
∗
3(N−1),1 B11 B12 B13

Γ∗12 Γ∗22. . .Γ
∗
3(N−1),2 B21 B22 B23

Γ∗13 Γ∗23. . .Γ
∗
3(N−1),3 B31 B23 B33


.

(24)

The diagonal matrix ΣΣΣ contains eigenvalues of the matrix
R̂3(N−1) such that λ1 ≥ λ2 · · · ≥ λJ ≥ λJ+1 = · · · =
λ3(N−1) . As T is a unitary matrix, the eigenvalues of ΣΣΣ are
the same as those of R̂3(N−1), and it has been shown in [8]
that the Gerschgorin disks of the transformed matrix have radii
Γi and centers λi where,

ci =

3∑
j=1

|Γij |, (25)

i=1, 2, . . . , 3(N -1).
In theory, with an infinite number of samples, the radii of

the disks associated with the noise subspace are zero, whereas
those of the disk associated with the signal subspace are non-
zero. In practice, as the number of samples is finite, a set of
disks with large radii is chosen for the signal subspace, which
is distinct from a second set of disks with small radii associated
with the noise subspace. The union of the larger signal disks
contains Ĵ eigenvalues, while the union of the smaller noise
disks contains 3N -Ĵ eigenvalues, where Ĵ is the estimated
number of sources. To estimate the number of sources, we
order the radii of the disks in descending order, so that Γ1 ≥
Γ2 ≥ . . .Γ3(N−1) . The two sets of disks are then separated by
defining the following Gerschgorin Disk Estimator function :

GDE(q) = cq −
D(Q)

3(N − 1)

3(N−1)∑
i=1

ci, (26)

where q=1, . . . , 3(N -1). D(Q) is an adjustable parameter
whose value tends to 0 as the number of snapshots Q → ∞.
D(Q) may be selected as D(Q) = κ

lnQ , where κ is a positive
number whose value is generally less than lnQ, and ln(.)
denotes natural logarithm. The number of sources is estimated
as

Ĵ = q0 − 1, (27)

where q0 is the smallest integer value of p for which the
function GDE(q) is negative. This estimate is based on the as-
sumption that the source number J is such that J ≤ 3(N−1).

In summary, the Gerschgorin disk estimator algorithm for
an AVS array in a shallow ocean can be stated as follows:

1) Calculate R̂RR3N using (17)
2) Partition R̂RR3N as in (21) to obtain R̂RR3(N−1).
3) Perform eigen-decomposition of R̂RR3(N−1) to obtain the

eigen-vector matrix U3(N−1).
4) Construct the matrix T using (22).
5) Calculate the transformed matrix RT using (23).
6) Calculate the radii of Gerschgorin disks using (25).
7) Estimate the number of sources from (27).
In the case of an APS array, 3N and 3(N −1) are replaced

respectively by N and N −1 in the foregoing description, the
3(N−1)×3 matrix Γ degenerates to a (N−1)×1 vector, and
the 3×3 matrix B degenerates to a scalar. Also, the condition
J ≤ 3(N − 1) is replaced by J ≤ (N − 1).
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IV. Results and Discussions
We have considered the ocean model described in Section II,

with the following parameters. Ocean depth h = 100 m, sound
speed in water c = 1500 m/s, sound speed in sediment cb =
1700 m/s, attenuation in the sediment is 0.2 dB/wavelength,
density ratio ρb

ρ = 1.5, signal frequency f = 78 Hz, number of
sensors N = 6 unless otherwise stated, inter-sensor spacing
d= 9.61 m (half-wavelength), HLA depth = 40 m, depth
of topmost sensor of VLA = 5 m, range r(j) = 5 km and
source depth z(j) = 10 m for all the sources, number of
snapshots Q = 300 unless otherwise stated. All the results have
been generated from 200 Monte Carlo simulations. We have
evaluated the performance of GDE for both AVS and APS
arrays. We have also compared the performance of GDE with
that of the AIC and MDL estimators for the AVS array. The
primary measure of performance is the probability of correct
estimation Pc = P(Ĵ = J).

We shall first address the problem of choosing the value
of the adjustable parameter D(Q)= κlnQ in (26). Consider two
sources at bearing 40◦ and 60◦. Figure 1 shows plots of Pc
versus Q for different values of κ. The SNR for each source is
-5 dB in panel 1a and 0 dB in panel 1b. For Q >300, equally
good results are obtained over a wide range of values of κ.
For smaller Q, the optimal value of κ is κopt 6.5 for -5 dB
SNR and κopt 5 for 0 dB SNR. Hence κ = 6±0.5 appears to
be a good choice over a wide range of values of SNR and Q.

We shall now compare the performance of GDE-V (for
AVS HLA) and GDE-P (for APS HLA). Figure 2 shows the
variation of Pc with SNR when 2 sources are present at 5◦

and 40◦. White noise with Gaussian and Laplacian (GG with
α=1) distribution are considered. It is seen that the probability
of correct estimation declines rapidly from almost 1 to almost
0 when the SNR dips below a certain threshold. This SNR
threshold for GDE-V is approximately 5 dB lower than that
for GDE-P. This difference is due to the fact the AVS array
provides 3 times as many data samples as the APS array.
Hence the AVS array performance is approximately 10 log103
= 4.7 dB higher than that of the APS array. It is also observed
that the performance of GDE is not affected by the change in
noise distribution.

Figure 3 shows plots of Pc versus number of snapshots Q
for white Gaussian noise at 0 dB and -5 dB SNR. All the
other conditions are the same as in Fig. 2. It is seen that
the performance of GDE-V begins to degrade only when the
number of snapshots is less than 100 even at the low SNR of
-5 dB. The performance of GDE-P is significantly poorer in
comparison.

Next we compare the performance of GDE-V and GDE-
P for HLA in white Gaussian noise when three sources are
present at 5◦, 30◦, and -30◦ bearing. The source at 30◦ is
termedas the source in the port direction while that at -30◦ is
termed as the source in the starboard direction. Table I shows
the probability distribution of the estimate Ĵ , i.e. P(Ĵ=j), for
GDE-P and GDE-V for SNR= -10 dB, 0 dB and 10 dB.
It is observed that GDE-P fails to estimate the number of

(a) SNR = -5 dB

(b) SNR = 0 dB

Figure 1: Probability of correct estimation Pc vs. number of
snapshots for GDE-V, considering different values for κ; two

sources are located at 40◦, 60◦.

sources correctly even at high values of SNR. When the SNR
is sufficiently high, GDE-P declares only two acoustic sources
since the port and starboard sources at 30◦ and -30◦ are treated
as a single source. GDE-V is able to resolve the port-starboard
ambiguity due to its ability to measure acoustic pressure as
well as the particle velocity vector; and hence it estimates
the number of sources correctly with probability 1 when SNR
exceeds -5 dB.

In the next experiment we consider four sources at 10◦, 50◦,
70◦ and 110◦, all other conditions remaining the same. For this
case, the probability distribution of Ĵ for GDE-P and GDE-V
are tabulated in Table II for three different values of SNR. In
this case, the inability of GDE-P to estimate the number of
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Figure 2: Probability of correct estimation Pc vs. SNR for two
sources at 5◦ and 40◦.

Figure 3: Probability of correct estimation Pc vs. number of
snapshots for two sources at 5◦ and 40◦.

j GDE-P GDE-P GDE-P GDE-V GDE-V GDE-V
-10 dB SNR0 dB SNR10 dB SNR-10 dB SNR0 dB SNR10 dB SNR

0 0.17 0 0 0 0 0

1 0.055 0 0 0 0 0

2 0.345 1 1 0.025 0 0

3 0.430 0 0 0.885 1 1

4 0 0 0 0.09 0 0

5 0 0 0 0 0 0

TABLE I: Performance comparison of GDE-P and GDE-V to
illustrate resolution of port-starboard ambiguity by GDE-V.

Probability distribution P(Ĵ = j) is shown for different SNR.

sources correctly even at high SNR stems from the fact that
the number of sensors is too small. As stated in Section III,
J ≤ N−1 and J ≤ 3(N−1) are the necessary conditions for
the validity of GDE-P and GDE-V respectively. In the present
example, GDE-P performs poorly because J is very close to
the upper limit of N -1 for the APS array. GDE-V performs
very well at -5 db SNR and fairly well even at -10 db SNR
since J is well below the upper limit of 3(N−1) for the AVS
array.

j GDE-P GDE-P GDE-P GDE-V GDE-V GDE-V
-10 dB SNR0 dB SNR10 dB SNR-10 dB SNR0 dB SNR10 dB SNR

0 0.82 0.61 0.565 0 0 0

1 0 0 0 0 0 0

2 0 0.02 0.035 0 0 0

3 0.18 0.37 0.4 0.115 0.04 0.005

4 0 0 0 0.880 0.96 0.995

5 0 0 0 0.005 0 0

TABLE II: Performance comparison of GDE-P and GDE-V to
illustrate the ability of GDE-V to estimate a larger number of

sources. Probability distribution P(Ĵ = j) is shown for different
SNR.

We shall now investigate the effect of varying the number
of sensors N on the performance of GDE-V. Consider an
AVS HLA in white Gaussian noise and two sources at 5◦

and 30◦. Figure 4 shows plots of Pc versus SNR for Q =
100 snapshots and 3 different values of N . Figure 5 shows
plots of Pc versus Q for -5 dB SNR and 3 different values
of N . Figure 6 shows the variation of Pc with N for Q = 50
and -5 dB SNR. These figures illustrate the improvement in
performance due to increase in the number of sensors.

Figure 4: Probability of correct estimation Pc vs. SNR for GDE-V
for two sources at 5◦ and 30◦, for 3 different values of N ; Q = 100

Next, we shall conduct two experiments to compare the
capability of different estimators to resolve closely spaced
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Figure 5: Probability of correct estimation Pc vs. number of
snapshots for GDE-V for two sources at 5◦ and 30◦, for 3 different

values of N ; SNR of each source = -5 dB.

Figure 6: Probability of correct estimation Pc vs. number of
sensors (N ) for GDE-V for two sources at 5◦ and 30◦; SNR of

each source = -5 dB, 50 snapshots.

sources. In the first experiment, we consider two sources at
the same range (5 km) and depth (10 m), one source is fixed at
a bearing of 50◦, and the bearing of the other source is varied
from 40◦ to 60◦ in steps of 1◦. In the second experiment, two
sources are at the same bearing (30◦) and depth (10 m), one
source is fixed at a range of 4 km and the other source is moved
away from the first in steps of 200 m. In both experiments,
noise is white Gaussian and SNR is 5 dB for both sources.
Figure 7 shows plots of Pc versus angular separation, and
Fig. 8 shows plots of Pc versus range separation, for GDE-
V, GDE-P, AIC and MDL estimators. Since AIC and MDL
are implemented only for the AVS array, we do not use the

suffix V for these estimators. It is seen from Fig. 8 that GDE-
V provides superior bearing resolution compared to the other
estimators. GDE-V can resolve two sources if their angular
separation is 5◦ or more. On the other hand, Fig. 8 indicates
that none of the estimators can resolve sources at the same
bearing even if they are well separated in range.

Figure 7: Probability of correct estimation Pc vs. angular
separation. Two sources; one at 50◦ and other varied from 40◦ to

60◦; SNR of each source = 5 dB.

Figure 8: Probability of correct estimation Pc vs. range separation
for two sources at the same bearing (30◦). One source is at 4000 m

and the second is at a larger range.

We shall now compare the performance of GDE-V with
the AIC and MDL estimators in greater detail. Consider two
sources at 5◦ and 30◦, and white Gaussian noise. Figure 9
shows plots of Pc versus SNR for Q = 300 snapshots, and
Fig. 10 shows plots of Pc versus Q for SNR = -4 dB. Figure
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11 shows plots of Pc versus Q for SNR = -3 dB if three sources
are present at 5◦, 30◦ and 60◦. These figures demonstrate that
GDE-V outperforms AIC and MDL if SNR is low and/or the
number of snapshots is small.

Figure 9: Probability of correct estimation Pc vs. SNR, for
GDE-V, AIC and MDL. Two sources are located at 5◦ and 30◦.

Figure 10: Probability of correct estimation Pc vs. number of
snapshots Q, for GDE-V, AIC and MDL. Two sources are located

at 5◦ and 30◦; SNR of each source = -4 dB

We shall next compare the performance of the estimators
in coloured noise. We model the noise as a Gaussian AR (1)
process whose model equation is given by

w(t) = a1w(t− 1) + u(t), |a1| < 1, (28)

where u(t) is a Gaussian white noise process and a1 is a
measure of correlation between adjacent samples. Figures 12a

Figure 11: Probability of correct estimation Pc vs. number of
snapshots for GDE-V, AIC and MDL; three sources are located at

5◦, 30◦,60◦; SNR of each source = -3 dB

and 12b show plots of Pc versus a1 for two different values of
SNR. It is seen that AIC and MDL estimators suffer a drastic
degradation in performance as noise correlation increases.
GDE-V is significantly more robust compared to the other
methods.

All the foregoing discussion pertains to source number
enumeration using an HLA. We shall now consider the use of
an AVS VLA. A VLA differs from an HLA in two respects.
One obvious difference is the difference in orientation. The
other difference is that noise is spatially correlated for a VLA
whereas it is spatially uncorrelated for an HLA. Figure 13
shows plots of Pc versus number of snapshots Q for two
different values of SNR viz. 5 dB and -5 dB. A comparison
of GDE-V (-5 dB) plot in Fig. 13 with the GDE-V (N = 6)
plot in Fig. 5 indicates that the performance of GDE-V with
AVS VLA is not as good as with AVS HLA. But it is seen
that GDE-V provides satisfactory performance if the number
of snapshots is sufficiently high. AIC and MDL estimators
fail totally even at higher SNR due to the spatial correlation
of noise.

V. Conclusion
In this paper, the performance of Gerschgorin disk estimator

(GDE) method of source number estimation was investigated
in a shallow range-independent ocean. A data model based on
the normal mode theory of underwater acoustic propagation
was used. Uniform horizontal linear arrays of acoustic pressure
sensors (APS) as well as acoustic vector sensors (AVS) were
considered. It was shown that the performance of AVS arrays
is better than that of the APS arrays in several ways. AVS
arrays offer the advantages of a lower noise threshold, higher
resolution, elimination of port-starboard ambiguity, and ability
to estimate a larger number of sources for a given array size.
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(a) SNR = -1 dB

(b) SNR = -3 dB

Figure 12: Probability of correct estimation Pc vs. parameter a1 of
AR (1) noise for GDE-V, AIC and MDL; two sources are located

at 5◦ and 30◦.

Conversely, the size of an AVS array required to achieve a
prescribed level of performance is only 1

3 the size of an APS
array, and this is a major advantage in several applications
such as autonomous underwater vehicles.

GDE is more robust than conventional methods such as
AIC and MDL estimators in several ways. GDE provides a
significantly better performance at low SNR and/or smaller
sample size. Unlike the latter methods, the applicability of
GDE is not restricted to white Gaussian noise. GDE can be
used for source enumeration in correlated noise since the
performance of GDE degrades very slowly with increase in
noise correlation. For the same reason, GDE can be used with
a vertical AVS array which is situated in a spatially correlated

Figure 13: Probability of correct estimation Pc vs. number
snapshots for GDE-V, AIC and MDL with an AVS VLA; two

sources are located at 5◦, 30◦.

noise field. GDE also offers a higher bearing resolution than
the other estimators. However all the estimators have one
common limitation; none of them resolve sources at the same
bearing even if they are well separated in range. This issue
needs further investigation.
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Appendix
Probability Density Function of a Com-
plex circular Generalized Gaussian Ran-
dom Variable

Consider a complex circular GG random variable X = X̄+
jX̃ , with mean E[X] = 0 and variance var(X) = E[|X|2] =
σ2.The PDF of X is given by

fX(x) = fX̄,X̃(x̄, x̃) = B(α)e−C(α)|x|α

= B(α)e−C(α)(x̄2+x̃2)α/2 > 0
(29)

The constants B(α) and C(α) can be determined by invok-
ing the constraints

∞∫
−∞

∞∫
−∞

fX̄,X̃(x̄, x̃)dx̄dx̃ = 1 (30)

E[|X|2] =

∞∫
−∞

∞∫
−∞

(x̄2 + x̃2)fX̄,X̃(x̄, x̃)dx̄dx̃

= σ2

(31)
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On substituting (29) into (30) and performing the integra-
tion, we get

8πBC−2/α

α
Γ(

2

α
) = 1, (32)

where Γ(.) denotes the gamma function. On substituting (29)
into (31) and performing the integration, we get

8πBC−4/α

α
Γ(

4

α
) = σ2. (33)

From (32) and (33), we get

B =
αΓ( 4

α )

8πσ2[Γ( 2
α )]2

, (34a)

C =
1

σα

(
Γ( 4

α )

Γ( 2
α )

)α/2
. (34b)

It can be easily shown that X satisfies the following prop-
erties of circular random variables:

E[X̄2] = E[X̃2] =
1

2
E[X̄2 + X̃2] =

1

2
σ2, (35)

E[X̄X̃] = 0 (36)

It may be noted that the marginal PDFs of X̄ and X̃ are
not generalized Gaussian.
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