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Abstract: Image registration is a critical component in the 

applications of various medical image analyses. In recent years, 

there has been a tremendous surge in the development of deep 

learning (DL)-based medical image registration models. This 

paper provides a comprehensive review of medical image 

registration. Firstly, a discussion is provided for supervised 

registration categories, for example, fully supervised, dual 

supervised, and weakly supervised registration. Next, similarity-

based as well as generative adversarial network (GAN)-based 

registration are presented as part of unsupervised registration. 

Deep iterative registration is then described with emphasis on 

deep similarity-based and reinforcement learning-based 

registration. Moreover, the application areas of medical image 

registration are reviewed. This review focuses on monomodal 

and multimodal registration and associated imaging, for instance, 

X-ray, CT scan, ultrasound, and MRI. The existing challenges 

are highlighted in this review, where it is shown that a major 

challenge is the absence of a training dataset with known 

transformations. Finally, a discussion is provided on the 

promising future research areas in the field of DL-based medical 

image registration. 
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I. Introduction 

Using image registration, it is possible to merge disparate 

picture collections into a single coordinate system with 

identical information. When comparing two images that were 

taken from different angles, at several times, or using various 

modalities/sensors, registration can be required [1, 2]. Until in 

recent times, the majority of image registration was done by 

doctors manually. Manual alignments are largely relied on the 

user's capability, which might be clinically detrimental to the 

quality of certain registration procedures. Automatic 

registration was generated to overcome some of the possible 

disadvantages of manual image registration. The DL 

renaissance has transformed the background of the research 

on image registration [3], despite the fact that various 

approaches to automated image registration have been 

intensively investigated before (and during). DL [4] has 

enabled the performance of recent work in a wide range of 

computer vision tasks, including but not limited to: image 

classification [4], segmentation [5], feature extraction [6-8], 

and object recognition [9]. As a starting point, DL proved to 

be useful in enhancing the performance of intensity-based 

registration. It was just a matter of time until other researchers 

looked at the applications of the registration process using 

reinforcement learning [10-12]. There has been a growing 

interest in developing unsupervised frameworks for one step 

transformation estimates due to the difficulty of 

procuring/creating ground truth data [13, 14]. Image similarity 

quantification is a well-known roadblock in this paradigm [15]. 

The application of similarity metrics based on information 

theory [13], frameworks of generative adversarial network 

(GAN) [16], and segmentation of anatomical features [17] to 

solve this difficulty has shown promising results. 

Traditional image registration is an iterative-based 

procedure that involves collecting the necessary features and 

determining a similarity measure (to assess the registration 

quality), selecting a model of transformation and lastly a 

search mechanism [18, 149, 153]. There are two types of 

pictures that may be sent into the system: moving and fixed, 

as shown in Fig. 1. It is possible to get the best alignment by 

sliding the moving picture over the stationary image over and 

over again. The considered similarity measure initially 

determines the degree of resemblance between the inputted 

photos that have been examined. Calculating the new 

transformation's parameters is done via an optimization 

method employing an update mechanism. An image with 

improved alignment is produced by putting these factors into 

action on the moving image. Otherwise, a new iteration of the 

algorithm is initiated. If the termination requirements are met, 

the process is ended. Until no more registration can be 

obtained or certain predetermined requirements are met, the 

moving picture improves its correspondence with the 

stationary image with each cycle. Either the transformation 

parameters or the final interpolated fused picture may be the 

system's output. 

There is a need for a thorough review of the area of medical 

image registration using DL, highlighting frequent issues that 

specialists confront as well as discussing forthcoming 



Bharati et al. 174 

research possibilities that can solve these challenges. It is a 

kind of machine learning (ML) that employs neural networks 

(NNs) with several layers to learn depictions of data using DL. 

Many different kinds of neural networks may be utilized for 

different purposes, and there have been significant designs 

developed lately to address engineering challenges. There are 

also many training procedures for neural networks that can be 

discussed while talking about neural networks. Sections on 

NN types, training paradigms, network structures, as well as 

methodologies make up this introduction to DL. PyTorch [19], 

Caffe [20], Keras [21], MXNet [22], and TensorFlow [23] are 

all publically accessible libraries that may be applied to create 

the networks. The existing literature focuses on medical image 

analysis using DL, reinforcement learning, and GANs in 

medical image analysis.  

This paper provided a comprehensive review of the existing 

literature on DL-based image registration. The review focuses 

on the innovations from a methodological and functional 

perspective. Different forms of registration including 

unsupervised and supervised transformation estimation, as 

well as deep iterative registration, are examined in this paper. 

A discussion is provided on the current trends, challenges, and 

limitations of image registration. This paper concluded by 

providing insights into the possible directions for future 

research. 

 

 

 
Figure 1. An image registration framework flowchart for the 

medical images 

II. Supervised registration models 

For DL models, supervised training is a common foundation 

for various registration models. There are three sub-categories 

of models according to the degree of supervision utilized at 

the stage training: fully supervised, dual-supervised and 

weakly supervised, and. Fully supervised registration makes 

use of ground truth DVFs from traditional algorithms of 

registration to watch over the learning process. These losses 

are often based on a mismatch between ground truth as well 

as expected DVFs, as seen in Fig. 2. Rather than using 

reference DVFs, that are the very widely utilized anatomical 

contours, the weakly supervised registration uses implicit 

reference labels, as also seen in Fig. 2. More than two types of 

reference data are frequently utilized to train dual supervised 

registration models. This includes anatomical structure 

contours, reference DVFs as well as image similarity. Below 

is a summary of the many supervised registration models. 

 

 
Figure 2. A sample working diagram of weakly and fully 

supervised registration models 

A. Applications of Fully Supervised Registration 

DVF denseness was derived via interpolation in a few 

experiments that predicted movements at patch centers. The 

output layer of a CNN based model with its 3 neurons was 

used by Cao et al., where each neuron represented the 

amplitude of motion along the x, y, and z axes in the middle of 

a tiny patch [24]. The authors were able to get results that were 

as accurate as more traditional methods. Inter-phase 

registration of lung 4D-CBCT and 4D-CT images was 

accomplished by the authors of [25] applying a patch-based 

NN. The deformable vectors in the moving patch centers were 

predicted using moving and target patch pair inputs. The 

diaphragm region's registration performance was assessed 

using three assessment metrics: CC, MSE, and SSIM. In other 

experiments, CNNs were used to forecast dense DVFs in 

advance. For instance, Yang et al. learned DVFs with brain 

MR images of the same resolution using a CNN based U-Net 

model and obtained excellent registration accuracy across 

various datasets [26]. A similar network design was used by 

Rohé et al. [27] for the registration of cardiac MR images, and 

the results were equivalent to traditional approaches in terms 

of contour overlap [27]. For smoothing diffeomorphic 

changes in brain MR images, Wang et al. [28] developed a 

method for tuning the regularization parameter [28]. The 

regularization parameters were discovered using pairwise 

image registration using a CNN prediction model. An 

effective and memory-saving method of predicting 

regularization parameters was used by the network's 

developers. Some works on supervised image registration 

employed fake DVFs to oversee the training of DL models in 

order to overcome the lack of training data. The collection of 

highly labeled data and the supervision of training at the voxel 

level would both be much easier and more cost effective if 

DVFs were artificially manufactured. For registering lung CT 

images, the authors of [29, 30] employed a fully supervised 

DIR technique, that the DVFs were previously produced to 

simulate both big and tiny movements. This approach was 

able to successfully register several datasets. Artificial DVFs 

may also be created in a variety of ways. These approaches all 

had registration accuracy that was on par with or better than 

traditional algorithms, as measured by TRE and the Dice score 

[31]. Reference deformations may not only improve accuracy, 

but they can also give biomechanical data and improve the 

viability of dynamical systems models. Prostate image 
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registration frameworks have been devised that ROIs are 1st 

segmented, and after that volumetric point in clouds are 

created from this meshing, utilizing tetrahedron meshing. 

Using biomechanical constraints, finite-element modeling 

was used to establish reference deformations from these points. 

When tested with DSC, MSD, HD, and TRE, the registration 

framework showed promising registration performance. Fu et 

al. employed this system to register multi-parametric MR 

images with CBCT in order to show its generalizability [32]. 

This strategy outperformed the typical intensity-based rigid 

registration when it came to TRE scores. 

B. Applications of Dual Supervised Registration 

The use of reference DVFs may speed up the monitoring 

process, but they are not infallible in all situations. Models 

trained just with reference DVFs will never outperform those 

trained using DLs. Using a fully convolutional network with 

dual guidance, Fan et al. [33] have registered brain MR images 

in order to correct for incorrect DVFs in previous work [33]. 

Euclidean distance from predicted to reference DVFs as well 

as MSE in fixed/warped images were used to evaluate network 

performance. Hierarchical loss and gap filling features were 

added to their model in order to boost performance. In addition, 

they used a variety of data sources to supplement their training 

materials. On a wide range of datasets, their technique 

demonstrated promising registration accuracy and efficiency 

compared to current best practices. The registration of brain 

MR images was shown by Ahmad et al. in two steps [34]. In 

their technique, the input photos were exemplified as a graph 

and grouped using iterative graph roughening prior to 

performing DL training. As a result, large-scale picture 

analyses could be conducted more quickly and accurately 

using this deformation initialization, which was much quicker 

and more accurate than previous approaches. For large-scale 

abdominal CT picture distortion, Ha et al. [35] used 

supervised learning to construct a notion [35]. Distinct 

heatmaps were predicted using deformable-field and graph 

convolution for relative displacement between two scans. The 

sparse displacement between two scans was estimated using 

smoothness of transformations as well as the MSE of DVF. 

Compared to state-of-the-art DL techniques for abdominal CT, 

our method exhibited a significant increase in accuracy. 

Several different ROIs have been successfully registered 

using the fully supervised registration approach. Certain 

difficult registrations, such as multi-modality as well as big 

motion registration, have been made possible with 

performance efficiencies equivalent to traditional approaches 

thanks to conventional registration methods' reference 

deformations.  

Biomechanical constraints may be learnt using specially 

prepared training samples, such as reference DVFs, in fully 

supervised registration. Full supervised registration has 

several benefits, but the lack of training data significantly 

restricts its use. Using artificial DVFs and data augmentation 

methodologies, this issue may be solved. Moving and 

stationary pictures may be tracked precisely using these two 

approaches, eliminating the uncertainty generated by 

reference deformations. It is especially relevant to multi-

modality registrations, when reference deformations are less 

reliable. However, both of these methods may not accurately 

depict the actual movements of the human body. There is, 

therefore, a need for coordinated efforts to develop more 

realistic training samples. Another crucial subgroup is that of 

registration, with little supervision. The organ contours, in 

contrast to reference DVFs, are easier to produce and less 

prone to error. This makes it easy to undertake unsupervised 

instruction. Contours might potentially be used to handle 

challenging registration issues, such as loud labels and large 

motions, because of the supervision they give [36, 37]. It is 

envisaged that dual supervision will outperform both of the 

above-described ways of supervision. Dual-supervision 

sample preparation is more time-consuming. When non-

differentiable biomechanical constraints are included, 

supervised registration has been shown to be a particularly 

effective method. We anticipate supervised registration to 

evolve further in the future, given its potential. 

C. Applications of Weakly Supervised Registration 

Several researchers in the field of brain MR-MR registration 

have embraced the concept of segmentation as part of 

registration training. Inter- and intra-subject brain MR image 

registration was achieved using a deformable registration 

strategy that incorporated global and local labeled learning 

with CNN [38]. For example, the authors of [39, 40] 

constructed CNNs based on hybridization methods that were 

capable of both image segmentation and registration in the 

same framework. As a result of the commonality in 

segmentation, registration was made easier and more accurate. 

Another method, used by Xu et al. [40], was to include the 

current segmentation into the network as an input [40]. 

Unsupervised registration was the major emphasis of 

Balakrishnan et al. [41] although they also included a poor 

supervision option using contours [41]. All of the above-

mentioned networks were able to successfully register data 

from a wide range of datasets. The authors of [42] also 

employed a registration system that combines deformable and 

affine MR to MR brain registration approaches in addition to 

pure deformable registration. The loss function for the affine 

network was global similarity, while the loss function for the 

deformable network was local. Furthermore, the registration 

network's training was supervised using anatomical similarity 

as a whole. When compared to other approaches, this one 

excelled them all.  

CT image registration using weakly supervised registration 

has also proved effective. Using noisy segmentation and 

spatial gradients labels, the authors of [36] applied a 

registration approach to CT-CT registration for abdominal. So, 

for both source-to-target and target-to-source transformations, 

they devised a formula. They also included public datasets for 

their training. To accomplish large-scale registration of CT-

CT lung, the authors of [37] developed a multilayer variational 

image registration network. In comparison to traditional 

procedures, their multi-level strategy was capable of 

providing much superior outcomes of registration. 

III. Unsupervised Registration Models 

The creation of training samples is still a time-consuming 

procedure, despite the adoption of numerous strategies (such 

as weak supervision and data augmentation) [43-47] to solve 

the information or data scarcity issue of supervised image 

registration. Since moving and fixed picture pairings are all 

the DL model needs to learn about deformation, unsupervised 

registration is the way to go. Table 1 provides an overview of 
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this subcategory. A loss function that is comparable to that 

used in traditional iterative registration is still required for 

training in this category. A DVF regularization term and an 

image similarity term and are often included in the loss 

function. Some similarity measures, i.e., localized NCC 

(LNCC), are changed to concentrate on tiny patches because 

of the nature of intrinsic convolution. Various loss terms may 

be introduced, i.e., identity loss to prevent overfitting and 

cycle-consistency loss to minimize singularity. As illustrated 

in Fig. 3(a), a discriminator rather than intensity-based metrics 

is applied to measure the similarity between warped and fixed 

images. For deep similarity-based registration, voxel 

intensities alone are not enough; underlying textures and 

information must also be taken into account. Fig. 3(b) depicts 

the overall procedure of unsupervised similarity-based 

registration. Unsupervised medical image registration using 

GANs is a subset of this technique. 

 

 

Figure 3. Generic framework of medical image registration based on (a) GAN and (b) similarity matrix 

A. Similarity metric-based registration

DIR of brain MR images was performed by the authors of [41] 

using an encoder-decoder-like network called VoxelMorph. 

Inputs for the network were paired brain MR images, which 

predicted dense DVFs. Based on the installation of the 

imaging modalities, MSE or NCC were used to monitor 

network training. The spatial gradient of the DVFs was used 

to improve the DVFs' believability. A similar decoder-

encoder-like network, called U-ReSNet, was constructed by 

Estienne et al. [48] in order to register brain MR images. The 

segmentations were performed by extracting medical images 

characteristics applying a common encoder in a model that 

was similarly utilized for reconstructing and registering 

anatomical labels deploying a single decoder in their network, 

which was innovative. A more accurate registration was made 

possible thanks to the segmentation findings. Some studies 

changed the training technique to a cycle-consistent one in 

order to improve DVF regularity. To do this, they used a 

network to analyze the distorted picture and convert it back to 

a moving medical image [49, 53, 58]. As a result, the Jaco. 

Det. included fewer false negatives, allowing for the 

generation of more believable DVFs. An identity loss 

component was included by Kim et al., which punished any 

distortion of identical images [49]. Researchers often use 

numerous registration stages and affine registration to 

accommodate big movements. De Vos et al. [13] used a multi-

resolution and multi-level approach to accomplish affine and 

deformable registration [13]. Multiple steps of downsampling 

of the original source photos allowed them to catch both huge 

and tiny movements. Other research has used a comparable 

coarse-to-fine method for lung imaging as well as obtained 

good registration accuracies [52, 54, 59]. Their DL models 

were able to handle substantial deformations in prostate and 

knee pictures by using affine registration [55, 60]. It is 

possible to assess their similarities as well as extract features 

using pre-trained CNNs instead of basic intensity metrics. 

Perceptual loss is a method that some researchers have utilized 

in distinct networks to learn deep metrics for improved 

registration. It has been shown, for example, that the deep 

similarity between the CT and CBCT images may be learned 

using a network of spatial weighting-based metrics, as has 

been established by Duan et al. [61]. 

B. GAN-based registration 

For many years, the task of registering MRUS images has 

been viewed as a problem due to the considerable range in 

image correspondence and the substantial disparities in the 

appearance of the images. It was possible to discriminate 

between warped and fixed pictures using a discriminator and 

a generator. When compared to traditional approaches, they 

found that this strategy produced much higher DSCs and 

significantly lower TREs following registration. Using a 

shallow discriminator, Elmahdy et al. [62] proved the 

possibility of performing combined prostate CT DIR and 

segmentation using a shallow discriminator [62]. To record 

movements at many scales, former researchers cropped the 

medical images to use dilated convolutional layers and to get 

tiny patches to generate and discriminate [52, 59]. An 

improved discriminator was created by Fan et al. [63] that was 

capable of receiving two pictures rather than a single one [16, 

50]. This was done to alleviate the impracticality of perfect 

matching, which they described as a mix of a fixed and 

moving pair of images. Because deformations do not occur in 

a uniform manner across the body, concentrating on regions 

that are more prone to bigger deformations may help increase 

registration accuracy. DL models by the works of [59] 

contained attention modules to give areas with big movements 

larger weights. The researchers then cropped photos into tiny 

patches and categorized them into “difficult” and “easy” 
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patches depending on the amount of attention each patch drew 

[64]. After categorization, the difficult-to-register patches 

were fine-tuned. 

A major advantage of unsupervised registration is the ease 

with which it may be taught compared to supervised 

registration. This has led to an increase in the number of 

articles on unsupervised registration [65, 66]. Researchers 

from many different organizations have attained accuracy 

levels equivalent to or even exceeding those of more 

traditional methods [52, 54]. Unsupervised multi-modal 

registration, on the other hand, has received less attention in 

the past, and hence merits more study. Because anatomical 

contours or no reference DVFs are supplied, unsupervised 

medical image registration is inherently more difficult than 

supervised medical image registration. Accordingly, effective 

registration requires additional steps beyond basic network 

training. For example, rigid registration was used by the 

authors [58] before the DL algorithm was used to minimize 

motion amplitudes in medical images, while binary masks 

were used by other researchers to concentrate on ROIs [54]. 

Using segmentation and a 1,000-fold increase in pulmonary 

vessel intensity, the author of [52] improved the image's fine 

features. Preprocessing may help with registration accuracy, 

but it can also complicate training and limit the 

generalizability of the model. Finally, unsupervised 

registration approaches are simple to learn and show great 

promise in terms of accuracy. This sub-category, therefore, is 

expected to see an increase in study interest.

 

Modality Similarity Loss GAN-based Transform ROI Evaluation metrics Reference 

CT-MRI NCC  No Deformable Prostate ASSD, DSC [24] 

MRI-MRI NCC/MSE  No Deformable and Affine Brain DSC [48] 

CT-CT CC No Deformable Liver Jaco. Det., 

TRE 

[49] 

MR-US N/A Yes Affine Prostate TRE, DSC [50] 

PET-PET CC No Deformable Chest MSE [51] 

CT-CT NCC Yes Deformable Lung TRE [52] 

MRI-MRI CC No Deformable Brain Jaco. Det., DSC [53] 

CT-CT NCC No Deformable Lung TRE [54] 

MRI-MRI NCC  No Deformable and Affine Knee DSC [55] 

MRI-MRI NCC No Deformable Brain DSC [14] 

PET-CT NCC No Deformable Body NCC [56] 

CT-CT CC No Deformable and Affine Liver Jaco. Det., DSC [57] 

Table 1. Summary of unsupervised registration 

*NCC: normalized cross-correlation; CC: cross-correlation; MSE: mean square error; ASSD: average symmetric surface 

distance; DSC: Dice coefficient; Jaco. Det.: Jacobian determinant; TRE: target registration error

IV.  Deep Iterative Registration 

A metric for measuring the similarity between a moving and 

stationary image, as well as an optimization technique for 

updating the transformation parameters to optimize the 

similarity between the images, are required for automatic 

intensity-based medical image registration. The sum of mutual 

information (MI), cross-correlation (CC), squared differences 

(SSD) [67, 68], normalized mutual information (NMI), and 

normalized cross correlation (NCC) [67, 68] were often 

utilized for similar applications prior to the DL renaissance. 

Intense-based image registration is a direct extension of DL in 

medical picture registration [69-71]. Since practitioners do 

registration in an iterative fashion, some researchers 

subsequently employed a reinforcement learning paradigm to 

make iterative estimates of a change [10-12, 72]. A breakdown 

of the two techniques is shown in Table 2. Later, we will look 

at some more recently discovered approaches that employ 

deep reinforcement learning-based medical image registration 

rather than the older methods that rely on deep similarity 

registration.
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Model Modality Transform ROI Learning Reference 

FCN CT Deformable Lung Metric [73] 

5-layer DNN CT/MR Deformable Head Metric  [74] 

9-layer CNN  CT Deformable Thorax Metric [75] 

5-layer CNN  MR Deformable Brain Metric [69] 

8-layer CNN  MR Deformable Prostate RL agent [72] 

LSTM/STN Metric Rigid brain MR/US Fetal [76] 

5-layer CNN Metric Rigid Abdominal MR/US [77] 

8-layer CNN RL agent Rigid  Spine/cardiac CT/CBCT [10] 

Dueling network RL agent  Rigid Spine MR/CT [11] 

Table 2. Summary of deep iterative registration techniques for medical imaging 

 

A. Deep similarity-based medical registration 

In this section, approaches for developing a similarity measure 

using DL are discussed. An intensity-based medical image 

registration system with an optimization algorithm, 

interpolation technique, and transformation model is used to 

include this similarity measure. Fig. 4 depicts the general 

structure of our study. For both training and testing, the solid 

lines indicate data flows, whereas for training alone, the 

dashed lines represent data flows. All of the other figures in 

this article are consistent with this. 

For unimodal registration, manually generated similarity 

measures work pretty well; DL has been applied to develop 

better metrics. Before moving on to multimodal registration, 

this section will focus on ways that employ DL to improve the 

performance of registration processes using unimodal 

intensity. 

 

 

Figure 4. A visual representation of the registration process used in research that measure image similarity using DL based 

framework for an intensity-based registration [133] 

1) Unimodal medical image registration 

First, some authors used DL to develop an application-specific 

similarity score for medical image registration. For 3D brain 

MR volume registration, those authors employed a 

convolutional-stacked autoencoder to generate features for 

unimodal, deformable registration (CAE). They then used 

gradient descent to maximize between the features set's two 

NCCs during the registration process. With this strategy, you 

may get better results than with diffeomorphic demons and 

HAMMER [78]. 3D thoracic CT images with its end-to-end 

deformable registration (inhale to exhale) has recently been 
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approximated by Eppenhof and colleagues [75]. Inhale to 

exhale pairs of thoracic CT images were applied to generate a 

3D CNN error map. This study also relied only on previously 

learnt characteristics. Lung CT registration might instead 

make the application of handcrafted MRF-based self-

similarity descriptors, and CNN-based descriptors as 

described by Blendowski et al. [73]. The CNN-based 

descriptors beat the hand-generated descriptors, but the best 

results were produced when both sets of descriptors were used. 

There is evidence that DL may not beat human approaches in 

the case of unimodal registrations. However, it may be utilized 

to gather more data. 

2) Multimodal medical image registration 

It is clear that DL can make a big difference in the medical 

images with its multimodal scenario, while manually built 

similarity measures have had limited accomplishment. 

Stacked denoising autoencoders were utilized by Cheng and 

colleagues [74] to develop an algorithm for measuring the 

quality of CT-to-MR picture alignment. Local cross 

correlation (LCC) optimization and NMI optimization were 

shown to be inferior to their metric in their application. The 

authors of [69] employed a CNN to learn the dissimilarity 

from aligned 3D T1 to T2 weighted images in brain MR 

volumes to explicitly quantify picture similarity in the 

multimodal situation. Gradient descent was utilized to 

repeatedly update the parameters of a deformation field based 

on this similarity measure. This technique outperformed MI-

optimization-based registration, paving the way for 

multimodal registration based on deep intensities in the future. 

In addition, the authors of. [69] used a 5-layer NN to develop 

a similarity measure, which was subsequently improved using 

Powell's approach, to conduct rigid registration images of 3D 

MR/US. MI-optimization-based registration was also beaten 

by this method in terms of performance. MRI and Transrectal 

ultrasound (TRUS) were registered using a similarity metric 

developed by the authors of [79]. Because of the absence of 

convexity of the learnt metric, they utilized an evolutionary 

algorithm to discover the solution space before applying a 

regular optimization approach. In comparison to MI-

optimization based and MIND-optimization based [15] 

registration, this system outperformed. 

B. Discussion and assessment  

New research has recently verified neural networks' capacity 

to detect picture similarity in multimodal medical image 

registration. Using the methodologies presented in this section, 

DL may be effectively used to difficult registration problems. 

It has been suggested that in the case of unimodal comparisons, 

learned medical image similarity measures can be the best 

option. Furthermore, real-time registration is challenging with 

these iterative approaches. 

1) Applications of Deep similarity-based registration 

SAEs created by Wu et al. [80] have been used to learn and 

measure the similarity of discriminative characteristics in 

input images [71]. Since SAEs can learn inherent image 

properties, the incorporation of SAEs into traditional 

algorithms has resulted in consistently better registration 

accuracy across a variety of datasets. Using a neural network, 

Simonovsky et al. [69] created a classification job to 

determine if the input picture pairings were properly aligned 

[69]. They then used CNN to replace the MI in a traditional 

registration method and found that the resultant algorithm 

provided considerably better registration of T1–T2 brain MR 

images. A concept comparable to Sedghi et al. [80] was used, 

and this groupwise registration approach was further refined 

by them. The typical MI measure had previously failed to 

handle challenging registration circumstances, but their deep 

metric did just as well in such situations. For the registration 

evaluation, TREs were calculated from the MR-TRUS image 

pairings. The training was monitored by comparing the actual 

TREs to the predicted TREs. Conventional MI-based feature-

based registration approaches were surpassed by the CNN, 

which had lower TREs than the current state-of-the-art 

feature-based approaches. They employed the dissimilarities 

in image attributes from moving to distorted pictures as the 

cost function in their pre-trained segmentation network [81]. 

Compared to traditional approaches, they reported quicker 

convergence times and better registration accuracy. For rigid 

and DIR, et al. used Bhattacharyya Distances, a learning-

based measure that outperformed MI [82]. The regularization 

component may also be improved by training, in addition to 

the similarity term. According to Niethammer et al. [83], a 

shallow CNN may be used to provide spatial adaptive 

regularization, for example [83]. For smoothness, shift-

invariant deformation field gradient is penalized in 

conventional transform regularization, which may over 

smooth areas with abrupt changes. 

V. Reinforcement Learning-based Medical 

Image Registration 

Reinforcement learning (RL)-based medical image 

registration approaches are examined in this section. In this 

case, a trained agent rather than a predefined optimization 

technique is employed to conduct the registration. In Fig. 5, a 

visual representation of this framework is shown. Most 

registration models based on reinforcement learning include 

stiff transformations. However, a deformable transformation 

model may be used. To date, the authors of [10] are the first 

to employ RL-based medical image registration to rigidly 

register abdominal and cardiac 3D CT scans as well as cone-

beam CT images. End-to-end training was carried out using 

an attention-driven hierarchical method with a greedy 

supervised approach. Registration based on MI as well as 

semantic medical image registration applying probability 

maps were both surpassed by this approach. Reinforcement 

learning was utilized by Kai et al. [11] to register the MR/CT 

chest volumes shortly after [67]. Based on Q-learning, this 

technique uses contextual information to estimate the 

projected image's depth. The dueling network architecture [84] 

is utilized to construct the network in this manner. Notably, 

this study makes a distinction between incentives with a finite 

life span and those that do not. Compared to other approaches, 

this one surpasses the Dueling Network, Deep Q Network, and 

iterative closest points (ICP) in registration [84]. 

Reinforcement learning was utilized to train a multi-agent 

system to strictly record the spine's CT and X-ray images 

instead of training a single agent such as the prior approaches 

[12]. They demonstrated the effectiveness of a multiagent 

system by observing several locations using an auto-attention 

method. A recent similarity measure presented by [85] was 

able to considerably outperform registration systems that 
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utilized it. Deformable registration of prostate MR volumes 

was performed by the authors [72] using a reinforcement 

learning-based technique instead of the previous rigid 

registration-based efforts. Stochastic action selection was 

controlled by a fuzzy controller and a low-resolution 

deformation model. In order to keep the action space as two-

dimensional as possible, the low-resolution deformation 

model is required. The LCC Demons [86] and Elastix toolbox 

[87]-based registration approaches were outperformed by our 

method. Reward learning is an obvious choice for medical 

image registration. For reinforcement learning-based 

registration, handling high-resolution deformation fields is a 

major difficulty. Rigid registration does not remove any of 

these difficulties. With their simple and recent origins, we 

predict that these methodologies will receive greater attention 

from the scientific community in the coming years. 

 

 

Figure 5. A pipeline visualization for studies that employ deep RL to indirectly estimate medical image similarity for medical 

image registration [72]

For the first time, 3D rigid-body image registration was 

performed using an RL framework, according to Liao et al. 

[10]. As part of this method, image alignment is performed 

using a neural network-based agent that predicts successive 

motions (e.g., translations and rotations within one millimeter 

or one rotational angle). Because of the DSL training method, 

it is not possible to use the AI agent's exploration history to 

boost training efficiency. A model like statistical deformation 

was used by the authors of [72] to limit the action space's 

dimensions, as opposed to the rigid registration method 

previously discussed. Asynchronous RL was recently used for 

2D affine registration by Hu et al. [88]. Convolutional long-

short-term memory (conLSTM) was used to extract 

spatiotemporal picture characteristics from the RL framework. 

VI.  Image Based Applications of Registration 

Here, we look into DLIR approaches from a new angle, 

focusing on how they might be put to use. There are several 

clinical applications that need medical image registration, 

including illness treatment and diagnosis planning, surgical 

procedures and image-guided therapy, patient prognostication, 

and treatment assessment, among many more uses of medical 

image registration. Real-time compensation for patient motion 

and soft tissue distinguishes DLIR systems from typical 

iterative registration procedures. Real-time cardiac motion 

analysis using this method might lead to the identification of 

new disease biomarkers. Atlases of population-averaged 

medical pictures may be estimated using DLIR algorithms. An 

atlas that is conditional on a variety of variables, including age 

and gender, was developed by the authors of [89] using a 

model like probabilistic spatial deformation that built on 

diffeomorphism. Using appropriate variables, they may also 

be used to examine the anatomical variability of populations. 

It is also possible to employ picture registration to directly aid 

with image segmentation. Bayesian segmentation was 

developed by Dalca and colleagues [90] using an 

unsupervised DLIR framework to convert 3D brain MRI [91] 

from an annotated atlas, eliminating the requirement for 

laborious manual segmentation of several images. As a result 

of these investigations, we can see how useful DLIR 

approaches may be in a variety of contexts. 

A. Monomodal Registration 

Table 3 summarizes all publicly accessible datasets used to 

build the DLIR registration technique, with hyperlinks to each. 

This will aid future studies on DLIR. There has been a 

considerable rise in the amount of research focusing on 

monomodal registrations in the last year. According to the 

observed trend, the development of DL-based multimodal 

registration approaches is expected to increase significantly in 

the next few years. MRI, X-ray, US, and CT are the most 

prevalent imaging modalities in the clinical setting, hence in 

this part we concentrate on monomodal DLIR approaches. 
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Organ Modality Registration Datasets References 

Heart Cine MRI Monomodal Sunnybrook [92] [13, 93-95] 

Liver CT, X-ray Monomodal COPDGen [96], LiTS,  SLIVER, MSD [57, 97]   

Brain MRI Monomodal HABS [98], MCIC [99], ADNI [100], PPMI 

[101], ABIDE [102] 

[41, 89, 90, 103-105] 

Knee MRI, X-ray Multimodal OAI [40, 55, 106] 

Table 3. Datasets of medical imaging for image registration 

 

1) CT registration 

Organs in the abdomen and chest (such as the lungs and heart) 

may be scanned using CT imaging (liver, kidneys, and 

pancreas). There are 4 liver CT image datasets (LiTS, MSD, 

SLIVER) and 8 thoracic CT image datasets (Table 3) to 

choose from DIR-Lab-4DCT [107], DIR-Lab-COPDgen 

[108], NLST [109], COPDGen [110], Empire 10 lung datasets, 

POPI [111], LIDC-IDRI [112]. There are also a number of 

multi-modal medical image datasets that include CT scans, 

VISCERAL Anatomy 3, RIRE and MM-WHS. Many recent 

studies have shown that CT scan registration is the second 

most popular sector for emerging medical image registration 

algorithms [13, 95, 113-115]. CT image registration is more 

difficult than brain MRI registration because of the higher 

variability and the lack of soft-tissue contrast in picture quality. 

2) X-ray registration and Ultrasound (US) registration 

There are not many publicly accessible datasets for X-ray and 

US images [7, 8, 116-123, 154], contrary to the other imaging 

modalities we have explored up to now. As a result, there are 

not many articles out there dealing with the registration of US 

and X-ray images. Only one work [124] focuses on 

monomodal US registration utilizing publicly accessible 

datasets from the 2 brain datasets, BITE and RESECT, which 

comprise ultrasound images. There are six publicly accessible 

datasets for X-ray images, including the JSRT [125], OAI, 

NIH ChestXray14 [126], and NLST [109]. However, 

compared to MRI and CT, X-ray image registration 

investigations are few and far between [127, 128]. 

3)  MRI registration 

With a specific emphasis on brain MRIs, MRI [144, 148, 152] 

is the most widely used modality for developing image 

registration techniques due to the presence of large-scale 

public datasets (an example of cardiac and brain MRI 

registration is depicted in Figure 6). Thus, the most recently 

developed DLR techniques are verified against earlier state-

of-the-art DLIR approaches, such as Conv2warp [115], VTN 

[57], and Voxelmorph [14, 103], in order to compare 

performance. The T1W and T2W modalities in most datasets 

on brain MRI are similarly used to build multi-modal medical 

image registration algorithms [26, 129]. Two publicly 

accessible datasets for cardiac motion estimation, Automatic 

Cardiac Diagnosis and Sunnybrook Cardiac Data Challenge, 

are available for cine MRI, which is the major modality 

utilized for cardiac image registration and cardiac motion 

estimation.

 

 

Figure 6. Voxelmorph-diff [104, 105] is an example of a cardiac and brain image registration. The first raw is cardiac MRI and second row 

is brain MRI registration [104, 105].
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B. Multi-modal registration 

Medical image registration is a difficult challenge because of 

the lack of distinguishing characteristics, the non-rigid nature 

of the images, and the need for sub-pixel precision. Because 

of its capacity to compare pictures from diverse sources, DL 

has been frequently used for multi-modal registrations. 

However, unlike monomodal registration, there is a lack of 

open access datasets for multi-modal registration. When it 

comes to multi-modal registration, there are many researchers 

that gather and analyze their own datasets to create and test 

their algorithms. Several example multi-modal registration 

applications are discussed in this section: This includes 2D-

3D registration, CT-MRI, CT-CBCCT, 2D-2W, and T1W-2W. 

1) 2D–3D registration 

Fixed and moving pictures in most applications for multi-

modal registration explored so far have the same dimensions. 

Moreover, there are 3D picture volumes that can be used for 

2D–2D image registration in public datasets. As a result, 

research has mostly concentrated on picture registration in 

2D–2D and 3D–3D formats. Apart from these, there are 

several clinical uses for 2D–3D image registration, which is a 

significant component of current research towards multi-

modal and DL-based image registration. Even more 

challenging is this endeavor since 2D images, such as those 

from x-rays, include tissue overlap and contrast difficulties 

inherent to 2D images. There have been a number of 

investigations into the 2D–3D image registration of X-ray to 

other 3D modality images, such as CT and MRI. There has 

also been considerable interest in slice-to-volume registration 

recently [130, 150]. DL-based 3D registration may be divided 

into 3 groups depending on the kind of DL technique as well 

as the training regime: deep iterative, supervised, and 

unsupervised. Fig. 7 depicts an overview of various strategies. 

Traditional iterative registration techniques are used in 

conjunction with deep iterative registration to include DL 

models. In this case, intensity-based similarity measurements 

are often substituted with deep similarity metrics. Deep 

similarity-based registration (DSBR) and RL-based 

registration are two subcategories of deep iterative registration. 

Different forms of reference data may be used to train DL 

models in supervised registration. These models may be more 

categorized as completely supervised, dual supervised or 

weakly supervised registration, depending on the kind of 

reference data employed. Likelihood GAN-based and metric-

based registration are two subcategories of DL models that 

may be further categorized under unsupervised registration. In 

GAN-based registration, the discriminator and generator fight 

against each other in an adversarial way.

 

Figure 7. Various techniques of image registration 

2)  CT-MRI registration 

Another popular multi-modal registration application is CT-

MRI matching. 3 open access datasets for developing multi-

modal registration techniques, including the three datasets 

discussed earlier, all comprise both CT and MRI scans of the 

same participants. The FFD structural representations on the 

RIRE dataset were learned using a PCANet developed by Zhu 

et al. [131]. According to Cao et al. [24], they developed an 

algorithm that could be used to match up MRI and CT images. 

Additionally, GAN-based networks have been used for pelvic 

imaging [30], while further research has presented methods 

for registering cardiac MRI and CT images [132]. 

3) CT-CBCT registration 

Image registration in medical images between CT and CBCT 

images has received attention recently as well [54, 133]. The 

authors of [134] presented DCIGN to learn hierarchical 

features from the deformable registration of CT-CBCT on 

neck and head images. First, Yao [133] presented a CNN to 

predict a primary rough transformation, after that a typical 

intensity-based registration to improve the registration for 

image-guided radiotherapy (IGRT). This reduced the forecast 

time while maintaining high accuracy in the registrations. 

4) MRI-TRUS registration 

MRI and TRUS [151] images have also been compared in a 

number of studies. This endeavor requires the use of two 

publicly accessible datasets, BITE [135] and RESECT [136]. 

Several approaches have been created based on these datasets. 

Most of this research, on the other hand, is based on private 

information. To deal with inflexible registration of MRI-

TRUS on prostate images, the authors of [31] developed a 

supervised network. Two networks, one for affine registration 

and one for deformable registration, were suggested by Hu 

and colleagues [17, 137]. To deal with this problem, Yan et al. 

[50] developed an adversarial image registration network 

(AIR-Net) based on GANs. An algorithm known as a neural 

network (NN) was used by Haskins and colleagues [66] to 

compare MRI to TRUS images. 
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5) T1W-T2W registration 

With T1W to T2W registration, a mapping from T1-weighted 

to T2-weighted MRI images may be learned and applied in 

real time. Many freely accessible brain MRI datasets may be 

used for multi-modal image registration. On the basis of the 

IBIS 3D Autism Brain Imaging dataset, the authors of [138] 

developed a 3D Bayesian encoder to decoder network for 

multi-modal image registration. A GAN-based network, 

UMDIR, was suggested by Qin et al. [139] for this objective 

based on the BraTS 2017 dataset. The authors of [129] 

synthesized T1W. FLAIR, T2W, and T1 contrast-enhanced 

using a Cycle-GAN, providing a link across the various 

imaging techniques. 

VII.  Challenges 

The absence of training datasets with known transformations 

is one of the most significant difficulties for supervised DL-

based techniques [141-147]. Various data augmentation 

techniques might be used to address this issue. Additional 

mistakes might be introduced by data augmentation 

techniques such as biases in arbitrary picture manipulation or 

changes between training and testing phases. There are many 

examples of organizations showing that the trained network 

can be used on datasets that are not the same as the training 

datasets. This prompted us to consider the possibility of using 

transfer learning to address the issue of insufficient training 

data. Transfer learning has not been used in the registration of 

medical images, which is surprising. In order to confine the 

expected transformation for unsupervised algorithms, 

multiple types of regularization terms were combined. 

However, determining the proportional value of each 

regularization term is a tough task. Researchers are still 

searching for the ideal selection of transformation 

regularization terms that may assist in building a deformation 

field for a certain registration job that is both physically 

feasible and physiologically realistic. In part, this is due to the 

absence of registration validation techniques. A lack of 

ground truth transformations between an image pair makes it 

almost impossible to compare registration approaches' results. 

As a result, registration validation techniques are just as 

crucial as the registration methods themselves. In 2019, there 

has been an upsurge in the number of articles that concentrate 

on registration validity. Further research into registration 

validation methods is required in order to accurately assess the 

efficacy of various registration techniques under various 

parametric settings. 

VIII.  Future Scopes 

Here, we present potential forthcoming research areas in 

DLIR to solve the issues raised up to now. An important first 

step is to understand what DLIR all is about. All registration 

approaches strive for accuracy, robustness, and speed. When 

trained to anticipate the spatial transformation matching the 

set of photos or pair, there was no substantial dissimilarity in 

registration time across techniques. Consequently, future 

DLIR techniques must put an emphasis on enhancing the 

networks' accuracy and generalization capabilities as well as 

on confirming that the predicted deformation fields are 

smooth and realistic. 

1) Traditional approaches may be used with DL networks in a 

novel way. No matter how much faster and more accurate 

DLIR techniques have become, the advantages of traditional 

techniques (such as diffeomorphic characteristics and robust 

registration) cannot be ignored. DL networks and classical 

diffeomorphic transformations are being used to smooth out 

deformation fields. 

2) As stated above, medical image registration is quite 

different from other medical image analysis jobs. DL 

networks may be made more application-specific by including 

additional picture registration prior to DL networks in future 

studies. To enhance the efficiency of registration, the 

morphology and topology of anatomical configurations, as 

well as the predicted kinds of deformation and spatial links 

between them, might all be included in DLIR networks. For 

example, additional labels might serve as the ground truth to 

assist the training process, even if ground-truth spatial 

transformations are occasionally accessible. Weakly-

supervised medical image registration algorithms have been 

presented, and they typically outperform their unsupervised 

counterparts in terms of performance. Priors that are more 

informative when paired with synthetically changed training 

data, i.e., blackening pixels in the moving picture or producing 

adversarial instances [140], might improve the capacity of 

networks to generalize to unknown data while remaining 

resistant to varying image quality. For this reason, DL 

networks and spatial and temporal priors are potential study 

topics for the future. 

Machine learning and computer vision are both advancing 

technologically, though, and new approaches are being 

proposed all the time. Neuroscience and machine learning 

may be brought together via the use of biologically realistic 

neuron models for computation in spiking neural networks 

(SNNs). In contrast, conventional neural networks are known 

to the machine learning community as SNNs. Instead of 

utilizing continuous values, SNNs use spikes, which are 

discrete events that occur at certain points in time. Differential 

equations reflect several biological processes, with the 

membrane potential being the most essential. As soon as a 

neuron reaches a certain potential, it spikes, resetting the 

neuron's potential to its original value. The Leaky Integrate-

and-Fire (LIF) model is the most frequent. SNNs, on the other 

hand, are generally sparsely linked and use sparse network 

topologies to their advantage.  

IX.  Conclusions 

Recent efforts using DL for medical image registration have 

been reviewed in this article. It is necessary to develop the DL 

frameworks with care since each application has different 

problems. Multimodal image registrations, such as those 

involving TRUS and MRI, face similar challenges, such as the 

inability to use a robust similarity metric for multimodal 

applications, the lack of large datasets, the difficulty in 

obtaining ground truth registrations and segmentations, as 

well as quantifying the model's predilections. [36, 37]. 

Popular methods to these problems include patchwise 

frameworks, application-specific similarity metrics, 

registration frameworks and unsupervised techniques 

influenced by variational autoencoders. Interpolation and 

resampling, despite the intricacy of many of the approaches 
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described in this paper, are typically not learnt by the neural 

network. As the area matures, we anticipate more academics 

to include these components into their DL-based solutions. 

Each strategy has its own merits and limitations, but the total 

number of researchers comparing the two is about equal. In 

both areas, we anticipate more studies and new approaches 

that combine the benefits of both tactics to emerge. We predict 

further studies in both categories. 
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