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I.  INTRODUCTION  
 
Time series data is a sequence of real numbers that represent 
the measurements of a real variable at equal time intervals. 
A data stream is an ordered sequence of points x1, , , , , ,xn. 
These data can be read or accessed only once or a small 
number of times. A time series is a sequence of real 
numbers, each number indicating a value at a time point. 
Data flows continuously from a data stream at high speed, 
producing more examples over time in recent real world 
applications. 
Most of the time series encountered in cluster analysis are 
discrete time series. When a variable is defined at all points 
in time the time series is continuous.  Clustering of time 
series data has applications in an extensive assortment of 
fields and has attracted a large amount of research 
([2][4][5][6][7][8][12]). 
Multidimensional time series are an extension and 
generalization of regular time series. They have more 
impact nowadays as most of the data consists of more 
parameters which are measured over time and decision has 
to be made considering the behavior of all these parameters 
together. We propose to investigate in this paper the 
behavior of the k-means algorithm for several 
multidimensional time series data. We compare versions of 
k-means for several distance measures. The paper is 
organized as follows: Section II describes the 
multidimensional time series data, Section III presents the k-
means for multidimensional time series data clustering and 
the distance measures used, Section IV contains 
experiments and comparisons and Section V presents the 
conclusions. 

 

II. MULTIDIMNESIONAL TIME SERIES 
A time series is defined as an array X = (x1, x2, …, xn) of 
measurements in time for a given parameter (or variable). 
A multidimensional time series [9] is defined as: 
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where each Xi, 1 ≤ i ≤ N is a time series on its on. The size 
of these time series can vary. 
In the multidimensional case, clustring involves grouping 
entities of the form X. Figure 1 shows an example of 
hierarchical clustering for 2-dimensional time series (there 
are 5 entries or instances that are clustered). 
Multi-dimensional time series appear if one deals with 
multiple measurements on some objects, phenomena, or 
variables. 
Many times, the multidimensional time series data are 
converted into a single time series by concatenating all the 
time series into a sinle one. But this will conduct to loss of 
generality. The advantage of dealing with a multi-
dimensional time series as such without transforming them 
is that, on the one hand, it offers a global point of view and 
shows some critical pathologies arising from evident 
discrepancies, whereas, on the other hand, it permits to 
integrate the information contained in each one-dimensional 
time series of X and therefore it is useful when each array is 
sparse and short [1]. 
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Figure 1 Two dimensional time series: example of hierarchical clustering 

III. K-MEANS FOR MULTIDIMENSIONAL CLUSTERING 
The similarity between two time series is usually calculated 
using a distance or a similarity measure. In this chapter we 
consider the difference between each time series (of a 
multidimensional time series instance) as an objective 
function which has to be minimized. Thus, the goal is to  
compare how similar two object X and Y are, where X and 
Y are given by: 
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A. Similarity measures 
We define an N dimensional objective function F=(f1, f2, …, 
fN ) as: 
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where d(�) defines a similarity measure.  
We use k-means [10] for clustering multidimensional time 
series data. In our case, each item is assigned to a cluster 
based on the values of the F function. We consider a 
weighted combination of all fi, 1 ≤ i ≤ N as a result of the 
similarity and denote this by dsim: 
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where w is a vector of weigths denoting the importance of 
that particulat time series in the clustering. For our 
experiments we considered all time series as having equal 
importance and in this case wi = 1, 1 ≤ i ≤ N. 
We implemented four different distances d(�): 

x Euclidian distance 
x Manhattan distance 
x Maximum distance 
x Average distance 

 

B. Learning the  k value  
One of the four distance measures (Euclidian distance, 
Manhattan distance, Maximum distance, Average distance) 
is selected from the main menu, and sent as parameter for 
the algorithm to use while computing. Also a Maximum 
Distance Percent can be introduced before running the 
algorithm; the default value for this variable is 0.6 in our 
experiments.  



The algorithm starts with a large k (equal to the no. of items 
to cluster) which is decreased step-by-step (by moving data, 
if convenient, from initial clusters - containing only one 
item from the data set - to new clusters - containing similar 
items) until it reaches a value that satisfies the stability of 
each cluster (small distance between data belonging to same 
cluster, large distance between data belonging to distinct 
clusters). 

 

IV. EXPERIMENTS 
We perform experiments considering three datasets from 
various domains. Silhouette coefficient [11] is used to 
compare the performance of k-means for various distance 
measures. 

 

A. First dataset 
This dataset contains data about countries with respect to 
temperature, precipitation level, atmospheric pressure and 
humidity. The countries have to be clustered based on the 
records over time for all these parameters together. 
These are the details of the dataset:  

- 14 (Countries); 
- No. of parameters: 5 (Precipitations Level (L/m^2), 

Wind Speed (m/s), Temperature (grC), Atm. 
Pressure (mmHg), Humidity (%RH));  

- No. of time points: 77. 
The results obtained by k-means are presented in Table 1. 
 

Table 1. k-means results for the first dataset. 

Algorithm Number of 
clusters 

Silhouette 
coefficient 

k-means with 
Euclidian distance 

8 0.2105 

k-means with 
Manhattan distance 

10 0.1574 

k-means with 
Maximum distance 

12 0.0200 

k-means with 
Average distance 

8 0.2105 

 
From the experiments we observe that: 

x Best average silhouette coefficient: Euclidian 
distance and Average distance; 

x Better average silhouette coefficient for cluster 0 is 
obtained using Manhattan distance (0.745) not 
Euclidian/Average distance (0.181) or Maximum 
distance (0.240); 

x Better average silhouette coefficient for cluster 1 is 
obtained using Euclidian distance or Average 
distance (0.674); 

x Best average silhouette coefficient obtained for a 
cluster is 0.828 using Euclidian, Average or 
Manhattan distance. 

 

B. Second dataset 
 

This dataset if from the Machine Learning Repository [13]. 
The files contains 19 activities (like sitting, lying on back 
and on right side, ascending and descending stairs, running 
on a treadmill with a speed of 8 km/h, etc). Data is acquired 
from one of the sensors (T_xacc) of one of the units (T) 
over a period of 5 sec, for each subject and for each of the 
activities. 
Results obtained by k-means are presented in Table 2. In 
this case we tested the algorithm with two values for the 
maximum Distance Percent parameter (used to decide which 
k (number of clusters) is best): 0.6 and 0.9. 
 

Table 2. k-means results for the second dataset. 
Algorithm Number of 

clusters 
Silhouette coefficient 

Max Distance Percent = 0.6 
k-means with 

Euclidian distance 
18 0.028 

k-means with 
Manhattan distance 

18 0.028 

k-means with 
Maximum distance 

17 0.028 

k-means with 
Average distance 

18 0.028 

Max Distance Percent = 0.9 
k-means with 

Euclidian distance 
17 0.028 

k-means with 
Manhattan distance 

16 0.038 

k-means with 
Maximum distance 

17 0.028 

k-means with 
Average distance 

18 0.028 

 
 
We observed that: 

x Best average silhouette coefficient: Manhattan 
distance using Max Distance Percent 0.9; 

x The same average silhouette coefficient for 
cluster 1 is obtained using Manhattan distance, 
Euclidian distance  or Average distance and 
the default Max Distance Percent (0.6) or 
Average distance and a Max Distance Percent 
= 0.9 (0.521) 

x The same average silhouette coefficient for 
cluster 0 is obtained using Maximum distance 
and the default Max Distance Percent or 
Euclidian distance or Average distance and a 
Max Distance Percent = 0.9  (0.491); 

x Best average silhouette coefficient obtained 
for a cluster is 0.613 using Manhattan distance 
and Max Distance Percent 0.9; 

x For Max Distance Percent lower than default 
(0.6) worse clustering results have been 
obtained. 



C. Third dataset 
The third dataset if from the KEGG database [14] and is not 
a time series dataset. We wanted to test the algorithm for 
this kind of data as well in order to validate the findings. 
The data is a Metabolic Relation Network (Directed) Data 
Set. It has 8 attributes such as: Nodes (min:2, max:116), 
Edges (min:1, max:606), Connected Components (min:1, 
max:13), Network Diameter (min:1, max:30), Network 
Radius (min:1, max:2), Shortest Path (min:1, max:3277), 
Characteristic Path Length (min:1), Average number of 
Neighbors (min:1)) 
The data set has 1,000 instances.  
The results obtained by k-means are given in Table 3. 
 
Table 3. k-means results for third dataset. 

Algorithm Number of 
clusters 

Silhouette 
coefficient 

k-means with 
Euclidian distance 

618 0.0014 

k-means with 
Manhattan distance 

618 0.0014 

k-means with 
Maximum distance 

618 0.0014 

k-means with 
Average distance 

618 0.0014 

 
We can observe that:  

x The same average silhouette coefficient is obtained 
for all distance measures (0.0014);  

x Using different values for Max Distance Percent 
(0.2, 0.6, 0.9) hasn’t improved  the results; 

x The best average silhouette coefficient obtained for 
a cluster is  0.920. 

 

V. CONCLUSIONS 
The paper investigates the role of various distance measures 
in k-means algorithm for clustering multidimensional time 
series data. Euclidian distance is the most frequent used and 
most common measure. Our experiments – three different 
datasets – reveal that Manhattan distances (and sometimes 
the average distance) are better candidates for similarity 
between two multidimensional time series instances. This 
work only investigates geometrical distances, but as future 
work, geometric distances presented here will be compared 

with other similarity measures (such as descriptive 
measures, pattern finding measures, etc.).  
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