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Abstract— This paper proposes a Reinforcement Learning (RL)
approach to the optimal scheduling of hydrothermal power
system. Hydrothermal scheduling is an essential task
performed by power system managers to decide the
coordinated operation of hydro and thermal plants for
achieving minimum production cost for the given time period.
The application of RL has been successfully tried for various
power system scheduling and control problems. The present
work is an attempt to explore whether RL can be applied to
hydrothermal scheduling which is one of the most challenging
problems in power system
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L INTRODUCTION

Hydrothermal scheduling is one of the most important
daily activities for a utility. Here the objective is to
minimize the cost of running the thermal units by utilizing a
given amount of water subject to system demand, reserve
and individual unit constraints. Several methods have been
proposed in the literature to solve the problem. These
include Nonlinear Programming (NLP) [1], Dynamic
Programming (DP) [2], Lagrangian Relaxation (LR) [3],
Tabu Search (TS) [4], Expert Systems [5], Artificial Neural
Networks (ANN) [6], Genetic Algorithms (GA) [7],
Particle Swarm Optimization (PSO) [8] etc. Among these
methods, the numerical solution methods are insufficient in
handling large and complex systems. Soft computing
methods can handle the above but they cannot handle
stochastic data in practical systems. DP method provides a
good framework for the problem. However it suffers from
the “curse of dimensionality”. This problem is effectively
tackled in Reinforcement Learning [9, 10]. While a DP
algorithm operates with the entire state space, RL algorithm
only operates on parts of the state space which are relevant
to the system operation. The power of RL lies in its ability
to solve, near-optimally, complex and large-scale multistage
decision making problems on which classical DP breaks
down. RL has been used as a powerful tool for many
applications which can be modeled as a multistage decision
making problem. The modern science of RL has emerged
from a synthesis of notions from four different fields:
classical DP, Al, stochastic approximation, and function
approximation. Reinforcement learning combines the fields
of dynamic programming and supervised learning to yield
powerful machine-learning systems. Reinforcement learning
appeals to many researchers because of its generality.

The main challenge in the hydrothermal scheduling
problem is that most of the proven methods need a precise
mathematical model of the system for getting an optimal
solution. But this is very difficult due to complexity of the
hydroelectric chain, non convex cost functions of thermal
plants, stochastisity of inflow to hydel plants and cost of
thermal plants etc. RL is a method of learning through
interactions with environment. The main advantage of this
approach is that it does not require a precise mathematical
formulation. It can learn either by interacting with the
environment or with the simulation model. Also unlike
other methods like soft computing, the computational efforts
for learning the dispatch for all possible load demands is
almost same as the effort required to learn for one particular
load demand. Although RL has been applied successfully to
solve power system problems like Unit Commitment
Problem (UCP), Economic Load Dispatch (ELD),
Automatic Generation Control (AGC) etc., this method has
not been investigated so far to solve the Hydrothermal
Scheduling Problem. In this paper a short term
hydrothermal scheduling (STHTS) problem is framed as a
multistage decision making problem and solved using RL
algorithm.

The rest of the paper is organized as follows. Section II
presents the mathematical formulation of short term
hydrothermal scheduling problem. A detailed description of
RL technique, various concepts in RL and its algorithm is
given in section III. The solution technique to tackle STHTS
problem is discussed in section IV. Section V provides and
analyses the results of a simple 2 plant model test system.
Finally section VI presents the main conclusions of the paper.

II.  PROBLEM FORMULATION

A. Objective function
Hydrothermal scheduling is an optimization of a
problem with the objective of minimizing the cost function

which can be written as
T N

min J = Z Z F, (P.(.£))

t=1 i=1
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where T is the number of operating periods, N is the number
of thermal plants, C is the composite cost function, P (i, t)
is loading of i thermal unit at time t and a;, b; c; are
thermal generation cost coefficients.

B.  Constraints
The constraints to be satisfied in this problem are as

follows:
1) Load generation balance

N M
P,(Lt)+ ) Py (jt) =P (D

where M is the number of hydropower stations, Py, (j, t) is
loading of j™ hydro plant unit at time t and Py (t) is the load
demand at time t.

2) Thermalplant loading limits

where Pinin & Pinax are the minimum and maximum power
output of thermal unit i.

3) Hydro plant loading limits

where Pjyin & Pjnax are the minimum and maximum power
output of hydro unit j.

4) Reservoir level limits

where V(j, t) is the storage of reservoir j at time t and V&
Vimax are the minimum and maximum storages of reservoir j

5) Reservoir discharge limits
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where Q (j, t) is the discharge of reservoir j at time t and
Qjmin & Qjmax are the minimum and maximum discharges of
reservoir j

6) Vfﬁtﬁr balance equation

v(j.t) = v(j.e11) + n, (r(i.0)1 Q1) 15(.1)) (7)
where r (j, t) & S (j, t) are the inflow and spillage for
reservoir j during time t. Also n, is the length of time slot in

hour t

7) Initial and final reservoir limits

V(o) =V,
_ ®)
V(. T)=V;

where V| is the initial storage and V' is the final storage of
reservoir j during the scheduling period.

8) Water use rate characteristic of hydro plant

(€))

where dj, g; & h; are the water use rate coefficients of hydro
plant j
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III.  REINFORCEMENT LEARNING

Reinforcement Learning (RL) is learning by interacting
with an environment. An RL agent learns from the
consequences of its actions, rather than from being
explicitly taught and it selects its actions on basis of its past
experiences (exploitation) and also by new choices
(exploration), which is essentially trial and
error. The reinforcement signal that the RL agent receives
is a numerical reward which encodes the success of an
action's outcome and the agent seeks to learn to select
actions that maximize the accumulated reward over time.
RL is generally used to solve multistage decision making
problems.

Multistage decision making problems are modeled as
Markov decision processes (MDPs) named after Andrey
Markov. MDPs provide a mathematical framework for
modeling decision-making in situations where outcomes are
partly random and partly under the control of a decision
maker. MDPs are useful for studying a wide range of
optimization problems solved via Dynamic Programming
and Reinforcement Learning. MDPs were known at least as
early as the 1950s. Today they are used in a variety of areas
including robotics, automated control, economics,
manufacturing etc.

Now we explain how RL can be used to solve an MDP.
There are various types of MDP. Here to introduce RL, an N
stage decision making problem is explained. Let the system
be in state x,in stage 0. If we take an action a,, system will
move to next state x;. When the system moves from state x;
to x;, it will incur a cost g(xy, ay x;). In general, in the K"
stage, if we take an action g, system will move from x; to
Xx+7and will incur a cost g(x;, aj, x;+;). For an N stage MDP,
system will reach an absorption state in the N stage. The
total cost incurred when we start from x, and reach final
state is

nl1
D Vel x,,)
k=0

where Y is the discount factor. Y is chosen a value between
0 and 1 depending on the significance of future costs.

MDP is the problem of finding actions ay, a;, a,..,an.;
such that the total expected cost C is minimized

o b

C=E|) v<e(xp awXp)
k=0

In general, the cost g(xx, ak, xk+1) could be a random variable.

When the system is in state x, we will take an action a based
on some “policy”. Usually, policy is denoted by z( ). Thus if
we are following a policy z("), the action taken in state x is
7(x). We can think of 7 as a mapping

mAIA

where X is the state space and A is the action space. There
are several algorithms to find optimal policy. Here, we
explain one algorithm, the Q learning algorithm.

Q learning algorithm involves learning the Q values. Q
value for a state action pair (x, @) is defined as the total
expected cost, if we start from state x, take an action a,
thereafter follow the optimal policy, z*.i.e.,

where xy =x, ap=a, a;=r*(x;) for k=1,2,3....N-1

Let the Q values for all possible actions {a; : i=1,2,....m} in
state x i.e., Q (x, ar), O(X, a2),..cccvenee. O(x, am), be known.
Then if Q (x, a*) < Q (x, ai) for all a#a*, we say a* is the

optimal action in state X. Mathematically, we write,

Similarly, if the Q values for all state action pairs are known,
then we can find the optimal policy or best action in any
state X, using the equation

Thus, by learning Q—values for different possible state —
action pairs, we can find the optimal actions. Therefore, to
learn the optimal actions, we have to first learn the Q-values.
To learn the Q-values, we proceed as follows. We start with
an initial guess for Q(xk, ar) which we denote as Q, (xk, ax) .
At each time instant £ the system is in state xx, we take an
action gy based on the current estimate of Q (v, ar), Q"(xk,
ak). Based on the action chosen and dynamics of the system,
we reach a new state x;,; and incur a cost of g(xx, ak, xk+1).
Using this data, we update the Q value for the current state
action pair using the following equation

(10)

(14)
where a the learning index, indicates how much the Q

values are modified in each step. Similarly, Q values of the
state- action pair corresponding to all the states visited are
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updated. After N stages, system will reach the terminal state;
then we say an episode is over. In general, N can be a
random number. To learn the Q values corresponding to all
the relevant state-action pairs, we start the iteration from a
new initial state and update the Q values of all states visited
till the system reach the terminal state. In this manner a
large number of episodes are repeated. An important issue
in RL is how to select the actions during the learning phase.
It may be noted that if we know the optimal Q values, we
can find optimal actions using (12). However, in the initial
part of the algorithm, the optimal Q values are unknown; but,
we have an estimate of Q values Q"(x, ax). The best action
with respect to the estimate of the Q values is termed as the
greedy action. Greedy action is given by the equation

a_ = argminalQ“{x, a,)

One straight forward approach used in many RL
applications is known as the e-greedy algorithm. In € greedy
algorithm, on reaching any state, greedy action is selected
with probability 1- & and any other random action with
probability €. Now the issue is how to choose €. In the initial
part of the algorithm, € is chosen close to 1 and as algorithm
proceeds, ¢ is reduced to zero. There are various other
sophisticated methods to judiciously balance the exploration
and exploitation in RL literature [9-11].

The e- greedy algorithm for Q — Learning

Initialize Q (x, a) to 0 for all (x, a) pairs
Initialize max. episodes, a, €, and x,
Fori=1: max. episodes
k=1
x=1
While x#x,
Find greedy action using (15)
a=a,with probability 1-¢
a=random action with probability &
Obtain the new state x,,.,, based on the current action
Obtain the cost corresponding to the new transition
g%k ap Xir )
Update Q value corresponding to the state action pair
(x,a) using (14)
X=Xnew
k=k+1
end
Update € based on the cooling schedule
No. of'steps (i) =k
Estimate of expected cost (i) = min(Q(i, a))
End

The above learning procedure is repeated a large number
of times. During the learning process, Q values of the state-
action pairs will be modified. In the initial phase of learning,
the estimated Q values Q"(xr,ary) may not be closer to the
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optimal value O'(x, ax). As the learning progresses, the
difference between the successive updates of Q values will
become smaller and the estimates approach to the optimum
i.e. the estimated Q values will converge to the true Q
values. Once the optimal Q values are reached, the best
action will be the greedy action at each stage k.

After completing the learning phase, the optimal policy
has to be retrieved. Following is the algorithm for the
retrieving phase.

Read the Q values

Get the initial state x,

For k=0 to N-1

Do
Find the greedy action using (16)
Find the new state x+,

end Do

IV. RL ALGORITHM FOR HYDROTHERMAL SCHEDULING

RL has been successfully applied for control and
scheduling applications [12-18]. But its applicability for
solving hydrothermal scheduling has not been explored so
far. In this paper we formulated the short term hydrothermal
scheduling (STHTS) problem as an MDP and solved using
RL algorithm. Here we consider a simple test system with a
single hydroplant P, operated in conjunction with a thermal
plant Pg serving a single series of load Py.

To use RL for solving STHTS problem, the first step is
to frame it as an MDP. Here the number of stages is taken as
the number of time slots in the scheduling period. After
stating the problem as an MDP, the next step is to define the
state space X, action space A and a reinforcement function g.
Then a simulation model for the problem has to be derived.

For this, the reservoir volume between the end limits is
discretised in suitable steps. This constitutes the state space
of the problem where the end states of this MDP are the
initial and final reservoir volume specified for the
scheduling horizon. The state at any stage is a particular
volume in the hydro plant reservoir. The action space is the
set of all volume states between the minimum & maximum
limit of the reservoir.

A single plant hydrothermal system has the following RL
framework for the short term scheduling problem

X:X1 U X2 U...... XT
where the state at any stage x; €X is any discrete volume.
The decision taken at each stage is by selecting an action
from the action space A where

A=A U AU Ar such that
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Ak: {ak N VminSak < Vmax}

Next we require a simulation model that gives the next
state x;+; given a current state x; and action at that stage ay.
In the case of STHTS problem, the model is very simple.
The initial state and the goal state are the reservoir volume
limits specified for the beginning and end of the scheduling
period. At any stage k any action ay is taken as explained in
the e-greedy algorithm and the learning agent reaches a new
state x;;. Selection of x;.; at stage k decides the hydro plant
loading Py(k) from which the thermal power Py(k) can be
calculated as

The cost incurred for transition from state x; to x;.; denoted
as g(x, ay xi+) is the production cost C(k) of the thermal
plant Py(k). The action a; from an action space Ay can be
judiciously selected such that the constraints are met. For
example, the selection of a non feasible value of volume
state can be discouraged by assigning a very high value of g.
Here each stage k corresponds to a load Py (k). Using epsilon

greedy algorithm as
explained in Period PL(MW) section III,
the optimal - 5 schedule can
be learned for all loads.
The total 2 1000 production
cost of the 3 900 entire
scheduling period can

4 500
be calculated as

5 400

6 300

In this framework, the objective of the problem is to find
sequence of actions ag, aj, ay......... ay.; such that total cost
C is minimized.

For selecting an action from the action set, we use &-
greedy method. During the learning phase, we learn the Q-
values for all possible combinations of state-action pair. The
optimal schedule is then found by following the algorithmic
steps explained in section III.

V. SIMULATION RESULTS

The proposed algorithm is implemented in Matlab 7.10.0
and is tested for two plant hydrothermal system given in

[19]. Both the plants are single unit plants. The details of the
two plants are shown in table I & table II. The thermal cost
coefficients are given in terms of R which is a fictitious
monitory unit. Also it is assumed that, hydro unit considered
is a constant head plant with a constant natural inflow of
1000 acre-ft/hr. Table III shows the load data for a 24 hour
day with individual periods taken as 4 hr each.

TABLE 1. HYDROPLANT CHARACTERISTICS

g
d (acre- Vinax
Prin Prax (acre- V min
(acre- ft/hr- (acre-
MW MW ft/hr- acre-ft
MW) - (MW) e (aore-f) | 0
0 200 260 10 0 6000 18000
TABLE 1. THERMAL PLANT CHARACTERISTICS
Pin Prnax a b c
(MW) | (MW) | (R'MW>-hr) | (R/MW-hr) (R/hr)
2000 1200 700 4.8 1/2000

TABLE III. SYSTEM LOAD DATA

To run the algorithm, we have to choose proper values
for the learning parameters. This is done by trial and error.
The learning parameter ¢ accounts for the rate of exploration
and exploitation needed. Here a value of 0.5 is selected
initially providing sufficient exploration of the search space
and is decreased in steps successively. A value of a as 0.1
showed sufficiently good convergence. Since the cost of
future stages has the same implication as the cost of the

current stage, value of Y is taken as 1.

The final minimum cost trajectory for the storage
volume is plotted in Figure 1. The optimal cost is 81738.46
R- The solution is exactly same as the one using Dynamic
Programming. This shows the success of RL for
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deterministic data. DP cannot be used in random
environment whereas RL can effectively tackle this issue.
Also, the thermal cost function in this case can be non
convex in nature. The optimal path can be determined to a
rather course grid of 2000 acre-feet by 4 hr steps in time and
could easily be recomputed with finer increments.

Storage volume (Vk)

0 | | | | |
1 2 3 4 5 6 7

Period k

Figure.1 Final trajectory for the hydrothermal scheduling

VI. CONCLUSIONS

In this paper we have demonstrated the application of
RL for solving one of the challenging problems in power
system. Unlike most of the other methods, RL does not need
a precise mathematical model of the problem. Another
important feature of RL is that, it can effectively handle the
stochastic cost functions associated with practical thermal
units. The performance of the algorithm is good for the test
system available in the literature.

The multiplant hydraulically coupled systems offer
computational difficulties that make it difficult to use that
type of system to illustrate the benefits of applying RL to
this problem. So in this study, we have considered a simple
test system. An interesting future line of study is to apply
the developed framework for the scheduling of practical
power systems. In practical systems, in addition to the
stochastic cost behavior of thermal units, a substantial
randomness can be observed in the hydro plant inflow,
power purchase cost etc. Hence for power deficient
hydrothermal systems involving day ahead and real time
power purchase, RL can be a promising solution strategy.
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