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Abstract—In AI and machine learning techniques such as 

decision trees and Bayesian networks, there is a growing need 

for converting continuous data into discrete form. Several 

approaches are available for discretization, however finding an 

appropriate and efficient discretization method is a challenging 

task. In this paper, we present an impurity based dynamic 

multi-interval discretization approach for learning Bayesian 

networks. This approach is based on the dependencies among 

nodes existing in the network and capable of discretizing the 

nodes in the network using the interdependencies with multiple 

class variables. The simulation based experiments conducted in 

this paper, suggest that the proposed discretization method 

produces good inference with very minimum information loss. 

The dynamic programming approach used in the method, 

further reduces the space and time complexity of the complete 

discretization process. 

Keywords-Bayesian Network; Discretization; Information 

Gain; Dynamic Programming 

I.  INTRODUCTION 

Bayesian Network (BN) is a model for reasoning about 
uncertainty, built on centuries-old Bayes theorem (invented 
by Thomas Bayes in 1763). Building Bayesian network has 
wide range of application areas such as Bioinformatics, 
Medicine, Image Processing, Manufacturing industries and 
Finance. Despite the wide applicability of Bayesian 
networks, requirement of discrete data is a limitation, as data 
for certain applications are routinely continuous, thus 
necessitating discretization. Moreover, while modeling a 
Bayesian network with continuous data or mixture of 
continuous and discrete data, it becomes extremely important 
that the discretization process should not be carried out in 
isolation as these attributes are connected to each other in the 
network. Discretization in isolation may lead to incorrect 
cause-effect analysis. Studies usually employ simple 
discretization techniques such as frequency-based 
discretization [5]. But by not addressing the ramifications of 
discretization, this process unknowingly loses information 
such as interactions and dependencies between variables and 
hence it impacts the learned parameters. Unfortunately, there 
is no consensus on a standard procedure for discretization. 
Consequently, it is still an unresolved research question as 
how best to handle continuous data. 

 
Ideally, discretization method for Bayesian approach 

should have the following features: 

1) Capability to split the numerical series of data to any 

number of buckets. 

2) Splitting of any variable must be logical, i.e. it should 

be optimal in terms of information extracted from 

training data set, and the split of a variable should be 

based on its dependencies on other variables in the 

network. 

3) Split must reduce the uncertainty as much as 

possible, though uncertainty can not be avoided 

completely. 

B. Motivation 

Many discretization works have been carried out [3] 
[4][11] for learning using continuous attributes. Specifically 
[3] [4] use the structure of a network for Bayesian learning. 
These works mainly deals with iterative binary splits or joins 
with some conditions, with a stopping criterion. For a 
predefined number of partitions k (i.e. k+1 discrete levels), 
recursive binary splits may not provide optimal discrete 
buckets. On the other hand, considering all combination of k-
partitions out of possible (N - 1) partitions (N is the total 
number of records) gives us the optimal partition, but time 
consumption is very high for a large value of N. So, in this 
work, we attempt a dynamic programming based approach to 
find best possible k-partitions, which also reduces the time 
complexity of the process. 

C.  Proposed method 

The proposed entropy based discretization methods have 
the following features: 

1) Searching through all possible k-partitions instead of 

performing binary partitions to find best split. 

2) Implementation of dynamic programming based Gain 

calculation to avoid redundant entropy computation. 

3) Intelligent pre-storing of entropy measures in a 

matrix, which reduces both time and space 

complexity. 

4) Capability of discretizing the nodes using multiple 

discrete nodes to capture all possible 

interdependencies. 

 
In addition to above, existing theorems from the literature 

are also incorporated to optimize the overall performance of 
the complete discretization approach. 
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The rest of the paper is organized as follows. Related 
work on continuous feature discretization is presented in 
Section 2. Section 3 presents the details of the proposed 
solution. Simulation based experiments are conducted on a 
Bayesian network and results are discussed in Section 4. 
Finally the paper ends with conclusion in Section 5. 

II. RELATED WORK 

Discretization process can be broadly classified in three 
different dimensions [1]: global vs. local, supervised vs. 
unsupervised, and static vs. dynamic.  

Local Discretization methods (ex. C4.5) perform 
partitioning of data points in localized regions of instance 
space. In global methods (ex. binning [2]), each continuous 
feature is discretized independent of other features in the 
whole space.  

Discretization methods which do not use the instance 
label of existing discrete features on a data set are referred as 
unsupervised discretization (ex., equal width interval and 
equal frequency methods). On the other hand, discretization 
methods that use the available class labels are referred to as 
supervised discretization methods.  

Determination of maximum number of intervals required 
in discretization plays an important aspect in classifying the 
processes as a static or a dynamic method. Methods such as 
binning and entropy based partitioning [3] perform 
discretization process on each feature to determine number 
of intervals (k) independent of other features. In contrast, 
dynamic methods search through all possible values of k for 
all features simultaneously. 

In the context of Bayesian learning, discretization can be 
classified into two categories, depending on the time phase at 
which it is done. First, data can be discretized prior to and 
independent from the application of the learning algorithm ( 
ex., equal-frequency/equal-width discretization [5]). Second, 
the discretization can be integrated into the parameter 
learning phase in an effort to exploit the synergies [6], [4], 
[7]. In the case of pre-discretization method [5], during 
selection of different ranking and bucket span, it is assumed 
that each variable is independent of others most of the time, 
which is not true in case of Bayesian network, as nodes are 
dependent on each other according to the connectivity 
(edges) in the network. During selection of bucket span, it 
does not consider other variables. Even if bucket span of 
dependent set of variables is considered, it is practically 
impossible to carry out this task for large size and complex 
networks. 

Entropy based discretization methods such as ID3 [13] 
and C4.5 [12] use minimal entropy heuristic for 
discretization of continuous attributes. These methods try to 
find out binary cut for each attribute for Decision tree 
learning. Introduced by Fayyad and Irani [3], a multilevel 
discretization process recursively performs binary partition 
using a stopping criterion called minimum description length 
(MDL). This method automatically decides the number of 
discrete levels suitable for a continuous attribute. These 
methods are very useful in decision tree learning, but do not 
provide optimal partition for discretization as they depend on 
iterative binary partitioning. 

The Chi-Merge algorithm described in [11] consists of an 
initialization step and a bottom-up merging process. Chi-
Merge is initialized by first sorting the training examples 
according to the values of an attribute being discretized and 
then constructed the initial discretization where each 
example is put into its own interval (i.e., placing interval 
boundary before and after each example). In the merging 
process, intervals are continuously merged until a 
termination condition is met. The interval merging process 

contains two iterative steps, firstly computing the 2 value 
for each pair of adjacent intervals, then merging (combine) 

the pair of adjacent intervals with the lowest 2 value. 

Merging continues until all pairs of intervals have 2 values 

exceeding the parameter 2 -threshold; that is, all adjacent 

intervals are considered significantly different by the 2 
independence test. This method also determines number of 
discrete levels required, like Entropy based methods by 
Fayyad [3]. 

Learning Vector Quantization (LVQ) [12] is a supervised 
learning algorithm based on neural networks, where code 
vectors Wi labeled by each class is fed into the space. This 
approach is used for discretization, where a potential cut 
point can be the middle of learned codebook vectors of two 
different classes [14]. 

A detailed comparison of the above methods along with 
the Histogram based approach is presented in [14]. 

III. PROPOSED APPROACH 

A. Discretize a continuous variable V 

The main steps of our approach to discretize a continuous 
node V are 

1) Perform a breadth-first-search in the network to 

discretize the continuous nodes in the network, 

starting from the root node (see section III.B.). 

2) Select the best suitable set of class nodes for the 

continuous node. 

3) Sort the values in node V and arrange the class nodes 

in a set, say S, accordingly. 

4) Find all possible cut points for each class node in S. 

5) Pre-store entropy measure of each possible valid 

partition in a matrix corresponding to each class node 

in set S. 

6) Compute all possible k-partitions from k-1 cut points 

of each class node using dynamic programming 

approach. Find best partition out of all computed 

partition in order to optimize Gain value of the 

continuous node with respect to each class node.  
 
The above steps are discussed below in detail.  

 

B. Parsing the BN for discretization 

The proposed method assumes that at least one attribute 
is in discrete form to start. We label the attribute as root 
node. Then, each node of the Bayesian network is processed 
using breadth-first-search and in each step, if the node is 
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continuous then it is discretized using suitable class 
variable(s). At every iteration step of Algorithm 1, a 
continuous valued attribute gets discretized based on a 
chosen class attribute. The best cut points are decided based 
on entropy maximization theory. Here, an undirected version 
of the graph for the Bayesian network is considered for 
traversal purpose. The overall algorithm is as follows: 

 
Algorithm 1: Main Discretization routine to parse all nodes in BN 

Data: Bayesian network (BN) structure and records of all the 
nodes 
Result: Discretized version of all nodes 
Initialization: 
 G = Bayesian network converted into undirected graph; 
 C = Set of all continuous valued nodes in the Bayesian network; 
 S = The root node which is initially discretized; 
Insert S into a queue Q;  
while Q !empty do 
          V = extract node from Q; 

          if V  C then 

                C = C - V; 
                Choose candidate class variable for node V; 
                Perform Discretization on node V; 
         end 
         ADJ = Set of all adjacent nodes of V; 
         Push all the nodes in ADJ to Q; 
end 

 

C.  Selection of class variable(s) 

In order to discretize a continuous variable V in each 
iteration of Algorithm 1, we need a class variable (in discrete 
form). The adjacent nodes of V can be considered as the 
possible set of class variables. To find the best splits 
according to the selected class variable(s), we use 
information Gain measure as given below. 

where T is the class variable and V is the continuous variable. 
Info(T) is defined as 

                                    (2) 

where P = (p1, p2, …….pn) is the probability distribution of 
class variable T. 

Info(V, T) for a given k-partition of V that divides the 
original class variables record set into T = T1, T2, . . … Tk is 
defined as, 

Higher the Gain better is the split, and hence we choose 
the split that has highest Gain. To find a discretization 
process for a Bayesian network, a continuous variable should 
not just be converted into a discrete form with respect to a 
single node. Instead, we capture as much dependencies as 
possible from all the adjacent nodes. Here we choose a 
combination of class variables so that the discretization 
process maximizes the Gain value for each class variable. 

For this, we explore to find a cluster of class variables whose 
information gain values are distinct and better than the rest. 
Algorithm 2 presents the selection procedure to find the best 
set of the class variables. 

 
Algorithm 2: Find best set of class variable(s) 
Data:   Continuous node V and its adjacent set adj D(V ) which 

contains only discrete nodes 
Result: Set S containing best set of class variable(s) for node V 
Initialization: 

 D        data set containing all the highest Gain(V, Xi) values 

for each Xi  where Xi  adj D(V) ; 
Sort D; 

Q   queue having initial element as D; 

while Q  !empty do 

            C    extract the first set from Q; 

            Call PPDP to divide the data set C into CL and CR; 
            W L = mean of CL; 
            W R = mean of CR; 

            if  | W L - W R | ≥  then 

                  insert CL into Q; 
            else 

                  S   CL; 

            end 
end 

Algorithm 2 comprises of two techniques: K-means [10] 
and Principal Direction Divisive Partitioning (PDDP) [8]. K-
means is the most widely used clustering technique; and it is 
the best representative of the class of iterative centroid-based 
divisive algorithms. On the other hand, PDDP is a 
representative of the non-iterative techniques based on the 
Singular Value Decomposition (SVD) of a matrix built from 
the data-set. Detailed description of Algorithm 2 can be 
found in [9]. 

D.  Cut-Points selection  

Cut points in class variable T always occur on boundary 
between two different class values [3]. Thus the number of 
possible cut points can be greatly reduced by the approach 
presented in [3]. However this approach is not directly 
applicable when multiple class variables are considered for 
discretization. When we choose cut-points according to the 
criteria mentioned in [3], we may not find a partition that is 
common in all classes. So in order to come out of this 
situation, we keep the partitions based on the cut points for 
continuous variable with respect to each class variable. Once 
all possible partitions computed, we consider top n (n=100 
for conducted experiments) partitions with highest 
information gain iteratively. In each step, we check the 
corresponding class variable of the Gain value and then fetch 
the Gain values of other class variable at the same partition 
either from the pre-computed Gain table in the database or 
by computing them freshly. Details of how to obtain the best 
partition which satisfies all the class variable distribution is 
discussed in section III.F. 

E.  Pre-storing Entropy measure  

Assume T = {a, b, c, d, e, f, g, h} is a class variable. 
Consider the following two cases of a continuous variable V, 
where each case is partitioned into three buckets: 
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Case 1 : (a, b, c)(d, e)(f, g, h), 
Case 2 : (a, b)(c, d, e)(f, g, h) 

 
Here the third partition (T3) generated in both the cases 

are same. If we compute the Gain(V, T) for both the above 

cases, then we redundantly compute the term  

which is exactly same for both cases. 
In order to avoid such redundant computation, we store 

all possible  in a triangular matrix (M) of 

dimension n x n. Consider an element Mij which denotes the 
function Info(ti, …….., tj) of a partitioned interval containing 

sorted elements {ti, …….., tj}  T. If k number of partitions 
are required, an interval [ti, ……, tj] in a data set of length n 
is defined as 

So, the total number of computations required to store all 

entropy measures is , which is in the order of 

O(n
2
) compared to O(k * n

k
) if all computations of entropies 

carried out at run time. 
An alternate pictorial presentation of the above derivation 

is given in section IV-D1. 

F.  Best partition by dynamic approach 

In this paper we follow a dynamic approach to compute 
all possible combination of partitions out of b possible cut-
points. Let B is the set of all cut-points. |B| = b, where b be 
the possible number of cut-points. Here, number of accesses 
to the entropy matrix M is also further reduced in an attempt 
to save more computing time in general and increases the 
overall performance of the proposed method. A typical 
example to illustrate the performance of the presented 
approach is given in section IV-D2. The procedure of this 
approach is given in Algorithm 3. 

 
Algorithm 3: ComputeGain(K, p, Value) 
Data:     An array B of all b possible cut-points, class variable T 

 S, number of partitions k and Matrix M containing all 

intermediate entropy measures 
Result: Hash Table H 
Initialization: Hash table H; K [1 : b + 2]; K1 = 1; Kb+2  = N, where N 
is the length of total data set; 
p = 1; value = 0; 
Function ComputeGain(K, p, Value); 

for i    Kp + 1 to b - k + p do 
              if p = 1 then 
                     value = 0; 
              end 

              value = value + M   ; 

              Kp+1 = i; 
              if p < b then 
                      ComputeGain (K, p+1,value); 
              else 

                      value = value + M    ; 

                      Store value in a hash table H with key as elements 
in K; 

                      return; 
              end 
end 

 
In Algorithm 3, hash table H is generated for each class 

variable in the set of best class variables S. To select the best 
partition, we need to leverage the corresponding values of a 
partition in each hash table. 

Assuming a scenario, there are two class variables 
considered for partitioning a variable. The partition creating 
highest Gain value in each table may not unique. So, we 
need to find a unique partition that maximizes the Gain value 
for both class variables. We consider top n partitions, from a 
descending sorted pool of partitions and compute the Gain 
value for other class variables with respect to the same 
partition. Now assume for a partition that the gain value 
stored in both hash tables are [0.62, 0.46] in point form. 
Euclidian distances are computed between the virtual 
maximum valued point, taken from highest Gain point for 
each class and each partition. The point having shortest 
distance from the virtual max point is considered as the final 
partition. If there is a tie in Euclidian distance of multiple 
partitions, then lowest absolute difference between the Gain 
values in the partition is considered for final selection criteria 
of best partition. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

To demonstrate the proposed discretization method, a 
simulation based approach is followed to create continuous 
data set from a well defined Bayesian network structure [16]. 
This structure contains filled conditional probabilities and 
prior probabilities for its corresponding nodes. 

A. Bayesian Network Source 

Bayesian network structure considered in this work 
contains all discrete state nodes whose probability tables are 
already populated. For this purpose, a model (Power plant) 
of the correlations among the sensors in a coal-driven power 
plant is considered listed in [16]. As shown in Figure 1, it has 
46 sparsely connected nodes, all of which are ternary. 
Nielsen and Jensen [15] have used this Bayesian network in 
their work for on-line alert system. 

 
Figure 1. Power Plant Bayesian Network Structure 
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B.  Data Simulation 

The open source tool for Bayesian network, namely 
Genie, is used for analysis of inference. Using the tool, a data 
set for the corresponding network is simulated. The discrete 
states of the nodes are represented in terms of range. So, 
after the data set is simulated, a randomization algorithm is 
used to simulate continuous values for the discrete states of 
the nodes within the provided range for each record in the 
generated data set. The table I shows the format of the states 
used for a node in the supplied Bayesian network. 

TABLE I.  INTERPRETATION OF STATE NAMES FOR 

NODE “V26” IN THE NETWORK 

State Name Lower bound Upper bound 

x_-INF_2_42_(Low) -  2.42 

x_2_42_4_66_(Medium) 2.42 4.66 

x_4_66_INF_(High) 4.66  

 
Multiple continuous valued records are simulated for 

each discrete record in the generated data set. As our 
discretization method requires at least one node to be in 
discrete state prior to the process, two nodes (”V26”, ”V56” 
that have only prior distribution) are kept in the original 
discrete form, with an assumption that an expert can provide 
discrete range of certain critical nodes in the Bayesian 
network. Once continuous attribute data set is generated, the 
proposed discretization process is executed on this data set 
and it is compared against the original discrete data set and 
the results are presented in the next section.  

C.  Low information loss during inference  

To analyze the effectiveness of the proposed method, the 
Bayesian network is learned separately on both original 
simulated discrete data set and generated discrete data set 
from the proposed method. Now both the learned networks 
are compared based on the inference results (marginal 
distribution) for target nodes when similar sets of evidence 
are applied on the network. Table II shows inference results 
based on 6 different types of evidences on the Bayesian 
network. 

Each set of inference results shows post marginal 
distribution of selected target nodes when the Bayesian 
network is updated based on a set of evidences. All the 6 sets 
of inference results suggest that the results obtained by the 
learned network on both original and predicted discrete data 
are very similar. Close inspection of these results shows that 
even though there are some variations in the post marginal 
probability, the order and skewedness of the distribution 
remains unchanged. This indicates that the information loss 
due to discretization is very minimal. 

D.  Time Complexity Optimization 

The advantage of our approach is two-fold: (i) 
Optimization of Entropy computation and (ii) Generation of 
optimized candidate partitions for continuous data points 
using dynamic approach. 

1) Optimization of Entropy computation:  As described 
in section III-E, our approach optimizes the time complexity 
by reducing the computation of all intermediate Entropy 

measures, which is exactly . Here, n is the 

number of records and k is the number of partitions required. 
So time complexity of computing all intermediate entropies 
is reduced from O(k *n

k
) to O(n

2
). This reduction is very 

significant for large value of n and k. Moreover, the time 
complexity of our method is independent of k, i.e., number of 
partitions required. 

Consider the matrix given in Figure 2. Assume a case 
where we have 8 data points and we need 4 partitions. The 
lower triangle shown in solid colored cells is redundant 
Entropy measures, as the computations are same as upper 

TABLE II.  COMPARISON BETWEEN ORIGINAL AND PREDICTED 

DISCRETE DATA FROM INFERENCE RESULTS ON SAME EVIDENCE 

 Original Data Predicted Data 

Evidence = [V26(L=1),V56(H=1)] 

Target V57 
Target V66 

Target V82 

H=0.963,M=0.037,L=0.0 
H=0.009,M=0.902,L=0.089 

H=0.985,M=0.014,L=0.001 

H=0.956,M=0.044,L=0.0 
H=0.013,M=0.884,L=0.103 

H=0.984,M=0.014,L=0.002 

Evidence = [V26(H=1),V56(M=1)] 

Target V57 
Target V66 

Target V82 

H=0.016,M=0.962,L=0.021 
H=0.073,M=0.922,L=0.005 

H=0.212,M=0.775,L=0.013 

H=0.010,M=0.962,L=0.028 
H=0.050,M=0.939,L=0.011 

H=0.152,M=0.776,L=0.072 

Evidence = [V56(H=1),V22(L=1)] 

Target V65 
Target V69 

Target V73 

H=0.008,M=0.265,L=0.727 
H=0.988,M=0.012,L=0.000 

H=0.501,M=0.488,L=0.011 

H=0.002,M=0.231,L=0.767 
H=0.986,M=0.012,L=0.002 

H=0.525,M=0.462,L=0.013 

Evidence = [V56(M=1),V22(H=1)] 

Target V65 

Target V69 

Target V73 

H=0.274,M=0.709,L=0.017 

H=0.585,M=0.408,L=0.007 

H=0.274,M=0.709,L=0.017 

H=0.144,M=0.855,L=0.001 

H=0.617,M=0.369,L=0.014 

H=0.133,M=0.685,L=0.183 

Evidence = [V26(L=1),V56(H=1)] 

Target V59 

Target V65 

Target V75 

H=0.996,M=0.004,L=0.000 

H=0.008,M=0.265,L=0.726 

H=0.999,M=0.001,L=0.001 

H=0.996,M=0.004,L=0.000 

H=0.002,M=0.221,L=0.777 

H=0.711,M=0.285,L=0.004 

Evidence = [V56(H=1),V22(M=1)] 

Target V59 

Target V65 

Target V75 

H=0.501,M=0.493,L=0.006 

H=0.274,M=0.708,L=0.018 

H=0.030,M=0.822,L=0.148 

H=0.560,M=0.432,L=0.060 

H=0.001,M=0.956,L=0.043 

H=0.009,M=0.830,L=0.161 

 
Figure 2. Pre-Storing of entropy measures in a matrix 
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triangle of the matrix (  cells). Further, consider cell (1, 

6). The partition corresponding to this is not a valid Entropy 
measure, as there are only two data points left after this to be 
filled into 3 partitions, which is not possible. Similarly, the 

cells shown in solid colors on top-right corner (  cells) 

of the matrix are invalid Entropy measures, hence discarded. 
Thus the total number of valid computation of Entropy 

measures is   . 

2) Generation of optimized Candidate Partitions :  In 
Algorithm 3 of section III-F, we also described the dynamic 
approach for finding all possible split points for partitioning 
the continuous data. Suppose, if we follow a simple approach 
by generating all candidate partitions without using dynamic 
approach, then total number of accesses to the entropy matrix 

M (discussed in section III-E) is , where as by 
following the dynamic approach provided in Algorithm 3, 
the total number of accesses to matrix M is 

 

. 
 

An analytical example is provided in Fig. 3. In this example, 
the size of records (n) is 6 and number of buckets is 4. 

Similarly, if the size of n is 10 and k is 4, non-dynamic 
approach needs 336 accesses to matrix M, where as dynamic 
approach need only 203. This difference further increase as 
the size of n and k increases. 

V. CONCLUSION 

Most of the learning networks (such as Bayesian 
networks) need discretization of continuous data. In this 
paper, we presented a dynamic discretization method using 
entropy measure specific to Bayesian network. We modified 
the conventional method of partitioning using only single 
class variable to accommodate it in the context of Bayesian 
model. The time complexity of our approach is minimized 
by following pre-storage and dynamic approach. The results 
of inference using the output discrete data in the network 
show the viability of our approach. The results also show the 
strong interdependencies among the nodes in the network. 
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