
A Novel Discretization for Parameter Learning in Bayesian Network using Dynamic

Programming

Satyabrata Pradhan

Infosys Labs

Infosys Limited

Hyderabad, India

satyabrata_pradhan@infosys.com

P. Radha Krishna

Infosys Labs

Infosys Limited

Hyderabad, India

radhakrishna_p@infosys.com

Abstract—In AI and machine learning techniques such as

decision trees and Bayesian networks, there is a growing need

for converting continuous data into discrete form. Several

approaches are available for discretization, however finding an

appropriate and efficient discretization method is a challenging

task. In this paper, we present an impurity based dynamic

multi-interval discretization approach for learning Bayesian

networks. This approach is based on the dependencies among

nodes existing in the network and capable of discretizing the

nodes in the network using the interdependencies with multiple

class variables. The simulation based experiments conducted in

this paper, suggest that the proposed discretization method

produces good inference with very minimum information loss.

The dynamic programming approach used in the method,

further reduces the space and time complexity of the complete

discretization process.

Keywords-Bayesian Network; Discretization; Information

Gain; Dynamic Programming

I. INTRODUCTION

Bayesian Network (BN) is a model for reasoning about
uncertainty, built on centuries-old Bayes theorem (invented
by Thomas Bayes in 1763). Building Bayesian network has
wide range of application areas such as Bioinformatics,
Medicine, Image Processing, Manufacturing industries and
Finance. Despite the wide applicability of Bayesian
networks, requirement of discrete data is a limitation, as data
for certain applications are routinely continuous, thus
necessitating discretization. Moreover, while modeling a
Bayesian network with continuous data or mixture of
continuous and discrete data, it becomes extremely important
that the discretization process should not be carried out in
isolation as these attributes are connected to each other in the
network. Discretization in isolation may lead to incorrect
cause-effect analysis. Studies usually employ simple
discretization techniques such as frequency-based
discretization [5]. But by not addressing the ramifications of
discretization, this process unknowingly loses information
such as interactions and dependencies between variables and
hence it impacts the learned parameters. Unfortunately, there
is no consensus on a standard procedure for discretization.
Consequently, it is still an unresolved research question as
how best to handle continuous data.

Ideally, discretization method for Bayesian approach

should have the following features:

1) Capability to split the numerical series of data to any

number of buckets.

2) Splitting of any variable must be logical, i.e. it should

be optimal in terms of information extracted from

training data set, and the split of a variable should be

based on its dependencies on other variables in the

network.

3) Split must reduce the uncertainty as much as

possible, though uncertainty can not be avoided

completely.

B. Motivation

Many discretization works have been carried out [3]
[4][11] for learning using continuous attributes. Specifically
[3] [4] use the structure of a network for Bayesian learning.
These works mainly deals with iterative binary splits or joins
with some conditions, with a stopping criterion. For a
predefined number of partitions k (i.e. k+1 discrete levels),
recursive binary splits may not provide optimal discrete
buckets. On the other hand, considering all combination of k-
partitions out of possible (N - 1) partitions (N is the total
number of records) gives us the optimal partition, but time
consumption is very high for a large value of N. So, in this
work, we attempt a dynamic programming based approach to
find best possible k-partitions, which also reduces the time
complexity of the process.

C. Proposed method

The proposed entropy based discretization methods have
the following features:

1) Searching through all possible k-partitions instead of

performing binary partitions to find best split.

2) Implementation of dynamic programming based Gain

calculation to avoid redundant entropy computation.

3) Intelligent pre-storing of entropy measures in a

matrix, which reduces both time and space

complexity.

4) Capability of discretizing the nodes using multiple

discrete nodes to capture all possible

interdependencies.

In addition to above, existing theorems from the literature

are also incorporated to optimize the overall performance of
the complete discretization approach.

145

Trends in Innovative Computing 2012 - Intelligent Systems Design

The rest of the paper is organized as follows. Related
work on continuous feature discretization is presented in
Section 2. Section 3 presents the details of the proposed
solution. Simulation based experiments are conducted on a
Bayesian network and results are discussed in Section 4.
Finally the paper ends with conclusion in Section 5.

II. RELATED WORK

Discretization process can be broadly classified in three
different dimensions [1]: global vs. local, supervised vs.
unsupervised, and static vs. dynamic.

Local Discretization methods (ex. C4.5) perform
partitioning of data points in localized regions of instance
space. In global methods (ex. binning [2]), each continuous
feature is discretized independent of other features in the
whole space.

Discretization methods which do not use the instance
label of existing discrete features on a data set are referred as
unsupervised discretization (ex., equal width interval and
equal frequency methods). On the other hand, discretization
methods that use the available class labels are referred to as
supervised discretization methods.

Determination of maximum number of intervals required
in discretization plays an important aspect in classifying the
processes as a static or a dynamic method. Methods such as
binning and entropy based partitioning [3] perform
discretization process on each feature to determine number
of intervals (k) independent of other features. In contrast,
dynamic methods search through all possible values of k for
all features simultaneously.

In the context of Bayesian learning, discretization can be
classified into two categories, depending on the time phase at
which it is done. First, data can be discretized prior to and
independent from the application of the learning algorithm (
ex., equal-frequency/equal-width discretization [5]). Second,
the discretization can be integrated into the parameter
learning phase in an effort to exploit the synergies [6], [4],
[7]. In the case of pre-discretization method [5], during
selection of different ranking and bucket span, it is assumed
that each variable is independent of others most of the time,
which is not true in case of Bayesian network, as nodes are
dependent on each other according to the connectivity
(edges) in the network. During selection of bucket span, it
does not consider other variables. Even if bucket span of
dependent set of variables is considered, it is practically
impossible to carry out this task for large size and complex
networks.

Entropy based discretization methods such as ID3 [13]
and C4.5 [12] use minimal entropy heuristic for
discretization of continuous attributes. These methods try to
find out binary cut for each attribute for Decision tree
learning. Introduced by Fayyad and Irani [3], a multilevel
discretization process recursively performs binary partition
using a stopping criterion called minimum description length
(MDL). This method automatically decides the number of
discrete levels suitable for a continuous attribute. These
methods are very useful in decision tree learning, but do not
provide optimal partition for discretization as they depend on
iterative binary partitioning.

The Chi-Merge algorithm described in [11] consists of an
initialization step and a bottom-up merging process. Chi-
Merge is initialized by first sorting the training examples
according to the values of an attribute being discretized and
then constructed the initial discretization where each
example is put into its own interval (i.e., placing interval
boundary before and after each example). In the merging
process, intervals are continuously merged until a
termination condition is met. The interval merging process

contains two iterative steps, firstly computing the 2 value
for each pair of adjacent intervals, then merging (combine)

the pair of adjacent intervals with the lowest 2 value.

Merging continues until all pairs of intervals have 2 values

exceeding the parameter 2 -threshold; that is, all adjacent

intervals are considered significantly different by the 2
independence test. This method also determines number of
discrete levels required, like Entropy based methods by
Fayyad [3].

Learning Vector Quantization (LVQ) [12] is a supervised
learning algorithm based on neural networks, where code
vectors Wi labeled by each class is fed into the space. This
approach is used for discretization, where a potential cut
point can be the middle of learned codebook vectors of two
different classes [14].

A detailed comparison of the above methods along with
the Histogram based approach is presented in [14].

III. PROPOSED APPROACH

A. Discretize a continuous variable V

The main steps of our approach to discretize a continuous
node V are

1) Perform a breadth-first-search in the network to

discretize the continuous nodes in the network,

starting from the root node (see section III.B.).

2) Select the best suitable set of class nodes for the

continuous node.

3) Sort the values in node V and arrange the class nodes

in a set, say S, accordingly.

4) Find all possible cut points for each class node in S.

5) Pre-store entropy measure of each possible valid

partition in a matrix corresponding to each class node

in set S.

6) Compute all possible k-partitions from k-1 cut points

of each class node using dynamic programming

approach. Find best partition out of all computed

partition in order to optimize Gain value of the

continuous node with respect to each class node.

The above steps are discussed below in detail.

B. Parsing the BN for discretization

The proposed method assumes that at least one attribute
is in discrete form to start. We label the attribute as root
node. Then, each node of the Bayesian network is processed
using breadth-first-search and in each step, if the node is

146

Trends in Innovative Computing 2012 - Intelligent Systems Design

continuous then it is discretized using suitable class
variable(s). At every iteration step of Algorithm 1, a
continuous valued attribute gets discretized based on a
chosen class attribute. The best cut points are decided based
on entropy maximization theory. Here, an undirected version
of the graph for the Bayesian network is considered for
traversal purpose. The overall algorithm is as follows:

Algorithm 1: Main Discretization routine to parse all nodes in BN

Data: Bayesian network (BN) structure and records of all the
nodes
Result: Discretized version of all nodes
Initialization:
 G = Bayesian network converted into undirected graph;
 C = Set of all continuous valued nodes in the Bayesian network;
 S = The root node which is initially discretized;
Insert S into a queue Q;
while Q !empty do
 V = extract node from Q;

 if V C then

 C = C - V;
 Choose candidate class variable for node V;
 Perform Discretization on node V;
 end
 ADJ = Set of all adjacent nodes of V;
 Push all the nodes in ADJ to Q;
end

C. Selection of class variable(s)

In order to discretize a continuous variable V in each
iteration of Algorithm 1, we need a class variable (in discrete
form). The adjacent nodes of V can be considered as the
possible set of class variables. To find the best splits
according to the selected class variable(s), we use
information Gain measure as given below.

where T is the class variable and V is the continuous variable.
Info(T) is defined as

 (2)

where P = (p1, p2, …….pn) is the probability distribution of
class variable T.

Info(V, T) for a given k-partition of V that divides the
original class variables record set into T = T1, T2, . . … Tk is
defined as,

Higher the Gain better is the split, and hence we choose
the split that has highest Gain. To find a discretization
process for a Bayesian network, a continuous variable should
not just be converted into a discrete form with respect to a
single node. Instead, we capture as much dependencies as
possible from all the adjacent nodes. Here we choose a
combination of class variables so that the discretization
process maximizes the Gain value for each class variable.

For this, we explore to find a cluster of class variables whose
information gain values are distinct and better than the rest.
Algorithm 2 presents the selection procedure to find the best
set of the class variables.

Algorithm 2: Find best set of class variable(s)
Data: Continuous node V and its adjacent set adj D(V) which

contains only discrete nodes
Result: Set S containing best set of class variable(s) for node V
Initialization:

 D data set containing all the highest Gain(V, Xi) values

for each Xi where Xi adj D(V) ;
Sort D;

Q queue having initial element as D;

while Q !empty do

 C extract the first set from Q;

 Call PPDP to divide the data set C into CL and CR;
 W L = mean of CL;
 W R = mean of CR;

 if | W L - W R | ≥ then

 insert CL into Q;
 else

 S CL;

 end
end

Algorithm 2 comprises of two techniques: K-means [10]
and Principal Direction Divisive Partitioning (PDDP) [8]. K-
means is the most widely used clustering technique; and it is
the best representative of the class of iterative centroid-based
divisive algorithms. On the other hand, PDDP is a
representative of the non-iterative techniques based on the
Singular Value Decomposition (SVD) of a matrix built from
the data-set. Detailed description of Algorithm 2 can be
found in [9].

D. Cut-Points selection

Cut points in class variable T always occur on boundary
between two different class values [3]. Thus the number of
possible cut points can be greatly reduced by the approach
presented in [3]. However this approach is not directly
applicable when multiple class variables are considered for
discretization. When we choose cut-points according to the
criteria mentioned in [3], we may not find a partition that is
common in all classes. So in order to come out of this
situation, we keep the partitions based on the cut points for
continuous variable with respect to each class variable. Once
all possible partitions computed, we consider top n (n=100
for conducted experiments) partitions with highest
information gain iteratively. In each step, we check the
corresponding class variable of the Gain value and then fetch
the Gain values of other class variable at the same partition
either from the pre-computed Gain table in the database or
by computing them freshly. Details of how to obtain the best
partition which satisfies all the class variable distribution is
discussed in section III.F.

E. Pre-storing Entropy measure

Assume T = {a, b, c, d, e, f, g, h} is a class variable.
Consider the following two cases of a continuous variable V,
where each case is partitioned into three buckets:

147

Trends in Innovative Computing 2012 - Intelligent Systems Design

Case 1 : (a, b, c)(d, e)(f, g, h),
Case 2 : (a, b)(c, d, e)(f, g, h)

Here the third partition (T3) generated in both the cases

are same. If we compute the Gain(V, T) for both the above

cases, then we redundantly compute the term

which is exactly same for both cases.
In order to avoid such redundant computation, we store

all possible in a triangular matrix (M) of

dimension n x n. Consider an element Mij which denotes the
function Info(ti, …….., tj) of a partitioned interval containing

sorted elements {ti, …….., tj} T. If k number of partitions
are required, an interval [ti, ……, tj] in a data set of length n
is defined as

So, the total number of computations required to store all

entropy measures is , which is in the order of

O(n
2
) compared to O(k * n

k
) if all computations of entropies

carried out at run time.
An alternate pictorial presentation of the above derivation

is given in section IV-D1.

F. Best partition by dynamic approach

In this paper we follow a dynamic approach to compute
all possible combination of partitions out of b possible cut-
points. Let B is the set of all cut-points. |B| = b, where b be
the possible number of cut-points. Here, number of accesses
to the entropy matrix M is also further reduced in an attempt
to save more computing time in general and increases the
overall performance of the proposed method. A typical
example to illustrate the performance of the presented
approach is given in section IV-D2. The procedure of this
approach is given in Algorithm 3.

Algorithm 3: ComputeGain(K, p, Value)
Data: An array B of all b possible cut-points, class variable T

 S, number of partitions k and Matrix M containing all

intermediate entropy measures
Result: Hash Table H
Initialization: Hash table H; K [1 : b + 2]; K1 = 1; Kb+2 = N, where N
is the length of total data set;
p = 1; value = 0;
Function ComputeGain(K, p, Value);

for i Kp + 1 to b - k + p do
 if p = 1 then
 value = 0;
 end

 value = value + M ;

 Kp+1 = i;
 if p < b then
 ComputeGain (K, p+1,value);
 else

 value = value + M ;

 Store value in a hash table H with key as elements
in K;

 return;
 end
end

In Algorithm 3, hash table H is generated for each class

variable in the set of best class variables S. To select the best
partition, we need to leverage the corresponding values of a
partition in each hash table.

Assuming a scenario, there are two class variables
considered for partitioning a variable. The partition creating
highest Gain value in each table may not unique. So, we
need to find a unique partition that maximizes the Gain value
for both class variables. We consider top n partitions, from a
descending sorted pool of partitions and compute the Gain
value for other class variables with respect to the same
partition. Now assume for a partition that the gain value
stored in both hash tables are [0.62, 0.46] in point form.
Euclidian distances are computed between the virtual
maximum valued point, taken from highest Gain point for
each class and each partition. The point having shortest
distance from the virtual max point is considered as the final
partition. If there is a tie in Euclidian distance of multiple
partitions, then lowest absolute difference between the Gain
values in the partition is considered for final selection criteria
of best partition.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To demonstrate the proposed discretization method, a
simulation based approach is followed to create continuous
data set from a well defined Bayesian network structure [16].
This structure contains filled conditional probabilities and
prior probabilities for its corresponding nodes.

A. Bayesian Network Source

Bayesian network structure considered in this work
contains all discrete state nodes whose probability tables are
already populated. For this purpose, a model (Power plant)
of the correlations among the sensors in a coal-driven power
plant is considered listed in [16]. As shown in Figure 1, it has
46 sparsely connected nodes, all of which are ternary.
Nielsen and Jensen [15] have used this Bayesian network in
their work for on-line alert system.

Figure 1. Power Plant Bayesian Network Structure

148

Trends in Innovative Computing 2012 - Intelligent Systems Design

B. Data Simulation

The open source tool for Bayesian network, namely
Genie, is used for analysis of inference. Using the tool, a data
set for the corresponding network is simulated. The discrete
states of the nodes are represented in terms of range. So,
after the data set is simulated, a randomization algorithm is
used to simulate continuous values for the discrete states of
the nodes within the provided range for each record in the
generated data set. The table I shows the format of the states
used for a node in the supplied Bayesian network.

TABLE I. INTERPRETATION OF STATE NAMES FOR

NODE “V26” IN THE NETWORK

State Name Lower bound Upper bound

x_-INF_2_42_(Low) - 2.42

x_2_42_4_66_(Medium) 2.42 4.66

x_4_66_INF_(High) 4.66

Multiple continuous valued records are simulated for

each discrete record in the generated data set. As our
discretization method requires at least one node to be in
discrete state prior to the process, two nodes (”V26”, ”V56”
that have only prior distribution) are kept in the original
discrete form, with an assumption that an expert can provide
discrete range of certain critical nodes in the Bayesian
network. Once continuous attribute data set is generated, the
proposed discretization process is executed on this data set
and it is compared against the original discrete data set and
the results are presented in the next section.

C. Low information loss during inference

To analyze the effectiveness of the proposed method, the
Bayesian network is learned separately on both original
simulated discrete data set and generated discrete data set
from the proposed method. Now both the learned networks
are compared based on the inference results (marginal
distribution) for target nodes when similar sets of evidence
are applied on the network. Table II shows inference results
based on 6 different types of evidences on the Bayesian
network.

Each set of inference results shows post marginal
distribution of selected target nodes when the Bayesian
network is updated based on a set of evidences. All the 6 sets
of inference results suggest that the results obtained by the
learned network on both original and predicted discrete data
are very similar. Close inspection of these results shows that
even though there are some variations in the post marginal
probability, the order and skewedness of the distribution
remains unchanged. This indicates that the information loss
due to discretization is very minimal.

D. Time Complexity Optimization

The advantage of our approach is two-fold: (i)
Optimization of Entropy computation and (ii) Generation of
optimized candidate partitions for continuous data points
using dynamic approach.

1) Optimization of Entropy computation: As described
in section III-E, our approach optimizes the time complexity
by reducing the computation of all intermediate Entropy

measures, which is exactly . Here, n is the

number of records and k is the number of partitions required.
So time complexity of computing all intermediate entropies
is reduced from O(k *n

k
) to O(n

2
). This reduction is very

significant for large value of n and k. Moreover, the time
complexity of our method is independent of k, i.e., number of
partitions required.

Consider the matrix given in Figure 2. Assume a case
where we have 8 data points and we need 4 partitions. The
lower triangle shown in solid colored cells is redundant
Entropy measures, as the computations are same as upper

TABLE II. COMPARISON BETWEEN ORIGINAL AND PREDICTED

DISCRETE DATA FROM INFERENCE RESULTS ON SAME EVIDENCE

 Original Data Predicted Data

Evidence = [V26(L=1),V56(H=1)]

Target V57
Target V66

Target V82

H=0.963,M=0.037,L=0.0
H=0.009,M=0.902,L=0.089

H=0.985,M=0.014,L=0.001

H=0.956,M=0.044,L=0.0
H=0.013,M=0.884,L=0.103

H=0.984,M=0.014,L=0.002

Evidence = [V26(H=1),V56(M=1)]

Target V57
Target V66

Target V82

H=0.016,M=0.962,L=0.021
H=0.073,M=0.922,L=0.005

H=0.212,M=0.775,L=0.013

H=0.010,M=0.962,L=0.028
H=0.050,M=0.939,L=0.011

H=0.152,M=0.776,L=0.072

Evidence = [V56(H=1),V22(L=1)]

Target V65
Target V69

Target V73

H=0.008,M=0.265,L=0.727
H=0.988,M=0.012,L=0.000

H=0.501,M=0.488,L=0.011

H=0.002,M=0.231,L=0.767
H=0.986,M=0.012,L=0.002

H=0.525,M=0.462,L=0.013

Evidence = [V56(M=1),V22(H=1)]

Target V65

Target V69

Target V73

H=0.274,M=0.709,L=0.017

H=0.585,M=0.408,L=0.007

H=0.274,M=0.709,L=0.017

H=0.144,M=0.855,L=0.001

H=0.617,M=0.369,L=0.014

H=0.133,M=0.685,L=0.183

Evidence = [V26(L=1),V56(H=1)]

Target V59

Target V65

Target V75

H=0.996,M=0.004,L=0.000

H=0.008,M=0.265,L=0.726

H=0.999,M=0.001,L=0.001

H=0.996,M=0.004,L=0.000

H=0.002,M=0.221,L=0.777

H=0.711,M=0.285,L=0.004

Evidence = [V56(H=1),V22(M=1)]

Target V59

Target V65

Target V75

H=0.501,M=0.493,L=0.006

H=0.274,M=0.708,L=0.018

H=0.030,M=0.822,L=0.148

H=0.560,M=0.432,L=0.060

H=0.001,M=0.956,L=0.043

H=0.009,M=0.830,L=0.161

Figure 2. Pre-Storing of entropy measures in a matrix

149

Trends in Innovative Computing 2012 - Intelligent Systems Design

triangle of the matrix (cells). Further, consider cell (1,

6). The partition corresponding to this is not a valid Entropy
measure, as there are only two data points left after this to be
filled into 3 partitions, which is not possible. Similarly, the

cells shown in solid colors on top-right corner (cells)

of the matrix are invalid Entropy measures, hence discarded.
Thus the total number of valid computation of Entropy

measures is .

2) Generation of optimized Candidate Partitions : In
Algorithm 3 of section III-F, we also described the dynamic
approach for finding all possible split points for partitioning
the continuous data. Suppose, if we follow a simple approach
by generating all candidate partitions without using dynamic
approach, then total number of accesses to the entropy matrix

M (discussed in section III-E) is , where as by
following the dynamic approach provided in Algorithm 3,
the total number of accesses to matrix M is

.

An analytical example is provided in Fig. 3. In this example,
the size of records (n) is 6 and number of buckets is 4.

Similarly, if the size of n is 10 and k is 4, non-dynamic
approach needs 336 accesses to matrix M, where as dynamic
approach need only 203. This difference further increase as
the size of n and k increases.

V. CONCLUSION

Most of the learning networks (such as Bayesian
networks) need discretization of continuous data. In this
paper, we presented a dynamic discretization method using
entropy measure specific to Bayesian network. We modified
the conventional method of partitioning using only single
class variable to accommodate it in the context of Bayesian
model. The time complexity of our approach is minimized
by following pre-storage and dynamic approach. The results
of inference using the output discrete data in the network
show the viability of our approach. The results also show the
strong interdependencies among the nodes in the network.

REFERENCES

[1] James Dougherty, Ron Kohavi, Mehran Sahami Supervised and
Unsupervised Discretization of Continuous Features. In Proceedings
of the Twelfth International Conference on Machine Learning (1995),
pp. 194-202.

[2] Michal R. Chmielewski and Jerzy W. Grzymala-Busse Global
discretization of continuous attributes as preprocessing for machine
learning. In International Journal of Approximate Reasoning, Volume
15, Issue 4, November 1996, Pages 319- 331.

[3] U. M. Fayyad and K. B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In IJCAI93,
pp. 1022-1027, 1993.

[4] Friedman N., Goldszmidt M. Discretizing Continuous Attributes
While Learning Bayesian Networks. In: ICML, 1996.

[5] Hartemink A, Gifford D, et al. Combining Location and Expression
Data for Principled Discovery of Genetic Regulatory Networks.
In:PSB, 2002.

[6] Monti S, Cooper GF. A Multivariate Discretization Method for
Learning Bayesian Networks from Mixed Data. In: UAI, 1998.

[7] Steck H, Jaakkola T. (Semi)-Predictive Discretization during Model
Selection. AI Memo AIM-2003-002, 2003.

[8] D. L.Boley. Principal Direction Divisive Partitioning, Data Mining
and Knowledge Discovery 2(4):325-344, 1998.

[9] S. Savaresi, D. Boley, S. Bittanti, and G. Gazzaniga. Choosing the
cluster to split in bisecting divisive clustering algorithms. In Second
SIAM International Conference on Data Mining (SDM’2002), pp.
299314, 2002.

[10] Jain, A.K., R.C. Dubes (1988). Algorithms for clustering data.
Prentice-Hall advance reference series. Prentice-Hall, Upper Saddle
River, NJ.

[11] Kerber, R. ChiMErge: Discretization of Numeric Attributes Learning:
Inductive, AAAI 92, pp. 123-128. 1992.

[12] Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan
Kaufmann California, 1993.

[13] Quinlan, J.R. Introduction to decision trees. Machine Learning 1,pp.
81-106, 1986.

[14] P. Perner, S. Trautzsch, In: Advances in Pattern Recognition, A.
Amin, D. Dori, P. Pudil, and H. Freeman (Eds.), Springer Verlag
1998, LNCS 1451, pp. 475-482.

[15] T.D. Nielsen, F.V. Jensen On-line alert systems for production plants:
A conflict based approach. International Journal of Approximate
Reasoning, 2007.

[16] Bayesian networks Repository. http://bndg:cs:aau:dkhtml/bayesian
networks:html

150

Trends in Innovative Computing 2012 - Intelligent Systems Design

