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Abstract: Machine-code decompilation, belonging to the area
of reverse engineering, has found its applications in many real-
world areas. Analysis of malicious software, search for vulner-
abilities, and source-code recovery are some of the most impor-
tant uses. As there exists a diversity of different platforms on
which software can be run, an existence of a generic decompiler
would be highly appreciated.
This paper presents an extended version of our retargetable de-
compiler that also allows decompilation of raw binary code,
such as firmware or code snippets. More specifically, in the
present paper, we provide a description of a retargetable decom-
piler that is being developed within the Lissom project. First,
we give an introduction into the area of machine-code decom-
pilation, including a brief discussion of existing tools. Then, we
describe the concept and architecture of the decompiler. As it
is available in the form of a web service, we also provide its
description. Finally, we summarise our results, present a case
study of using the tool for analysing malicious software, and
conclude the paper by several remarks on future research.
Keywords: reverse engineering, decompilation, retargetable de-
compiler, raw machine code, code snippets, web service, Lissom

I. Introduction

A machine-code decompiler performs the reverse operation
to that of a compiler—it takes binary program code for a giv-
en architecture, and produces a high-level representation of
the program. Since the appearance of the first decompiler-
s, they have found their applications in many areas, includ-
ing (but not limited to) high-level analysis of malicious soft-
ware (malware), discovery of vulnerabilities, retrieval of lost
source code, and reversing binary code for the purposes of
interoperability [1].
Over the years, the number of different platforms on which
software can be run has dramatically increased [2]. This fac-
t poses a challenge for the authors of decompilers because
creating a decompiler for a new platform from scratch is no
longer feasible. To cover the current state of the art, we next
focus on existing decompilers and analyse their generality.
The Boomerang decompiler [3–5] tried to use a generic de-
scription of a processor, which could be used alongside with
common processing code. However, the used description
language was too weak to cover more complex architectures,
such as x86. Moreover, this decompiler is not developed any-

more. The currently widely used Hex-Rays Decompiler [6]
is a proprietary solution, so we do not know the details. Nev-
ertheless, from the fact that it has supported for a long time
only x86 and it took quite a long time to add support for
ARM, we can assume that this solution is not easily retar-
getable. Another decompiler, SmartDec [7], supports only
the x86 and x86-64 architectures. Finally, we can mention
the REC decompiler [8], which is available for free, but with-
out source code. It supports architectures x86, x86-64, MIP-
S, PowerPC, and mc68k. The range of features varies for
individual architectures, so it seems that adding support for a
new architecture does not follow any uniform way.
This paper is focused on describing a retargetable decompiler
that is being developed withing the Lissom project [9]. Its
main advantage over the existing tools lies in its generality—
to add support for a new architecture, one has to first describe
this architecture, and then utilize the already developed tools
to build a decompiler for that architecture. In this way, the
development time for adding support for a new architecture
can be dramatically decreased [10, 11]. The decompiler is
freely available in the form of a web service, and is accessible
via any commonly used web browser.
In this paper, we further extend the previous concept de-
scribed in [12]. Most importantly, the novel approach is in
the dealing with the decompilation of raw binary snippet-
s, which represents a very useful feature often used during
malware analysis.
The present paper is organized as follows. After this intro-
ductory section, Section II describes the concept and archi-
tecture of the decompiler. Then, Section III introduces a new
feature of our decompiler—decompilation of raw machine
code. Section IV provides a brief description of the decompi-
lation service. Section V summarises our results and presents
a case study of using the tool for malware analysis. Finally,
Section VI concludes the paper by stating several remarks on
future research.

II. Architecture and Concept

The Lissom project [9] retargetable decompiler is developed
to process any executable file, independently of a particular
target architecture or object file format [11, 13, 14]. Its struc-
ture is depict in Figure 1.
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Figure. 1: The architecture of the decompiler.

As we can see, it consists of two essential parts—the prepro-
cessing part and the decompiler core (containing the front-
end, middle-end, and back-end parts),

A. Binary Snippet Wrapper

Besides the common inputs—executable applications, object
files or libraries, as of version 1.7 of the decompiler, it is also
possible to reverse-compile machine-code snippets. These
are pieces of binary code stored in a raw data file. They are
usually created by dumping a running program’s image (like
firmware) or cutting out parts of an object file (interesting
functions, sections, etc.). To process such files, a new step
has been added to the decompiler’s tool chain. It wraps raw
data into an object-file-format container and passes the result
to the preprocessing part. The wrapping process and neces-
sary changes made in the front-end to enhance decompilation
quality for incomplete inputs are described in Section III.

B. Preprocessing

The preprocessing part analyses the input platform-
dependent application to recognise its file format, compiler,
and potentially the used packer.
The information about the originally used programming lan-
guage and compiler is valuable during the decompilation pro-
cess because each compiler generates a quite unique code
in some cases; therefore, such knowledge may increase the
quality of the decompilation results. The information about
the originally used language may be also used for selecting
the output language.
The detection is based on signatures that uniquely identi-
fy the used compiler and, therefore, the used language too.
Each signature represents a sequence of machine-code in-
structions that are executed as the first ones during the start
of the application.
Whenever we detect a usage of a compression or protection
scheme within the decompiled application, we try to unpack-
/unprotect it at first by using our plugin-based unpacker. The
details can be found in [15].
After that, the preprocessing phase converts the decompiled
file into an internal Common-Object-File-Format (COFF)-

based representation. This conversion is performed by our
plugin-based converter [16, 17]. Currently, it converts from
Windows PE, UNIX ELF, Apple Mach-O, and other file for-
mats. Other file formats can be supported by implementing
a new plugin. Afterwards, such a COFF file is processed by
the decompiler core.

C. Front-End

The decompiler core is built on top of the LLVM Compiler
System [18]. The LLVM assembly language, LLVM IR, is
used as an internal code representation of the decompiled ap-
plications throughout the decompilation process. The core of
our decompiler consists of three parts—a front-end, a middle-
end, and a back-end, whose description follows.
Firstly, the front-end processes the input COFF file. This
is the only platform-specific part of the decompiler. The
processing is done by an instruction decoder, which is au-
tomatically generated based on the target architecture model.
This model is described by the ISAC architecture description
language [19], which is also developed within the Lissom
project. The ISAC processor model consists of the following
two main parts.

(1) In the resource part, processor resources, such as regis-
ters or memory, are declared.

(2) In the operation part, processor instruction set (i.e. as-
sembler language syntax, binary encoding, and be-
haviour of each instruction) is specified.

From this model, we are able to obtain a sequence of LLVM
IR instructions, which represent the semantic behaviour of
each processor instruction. The model also contains the bi-
nary encoding of instructions. This is used for an automatic
generation of the instruction decoder.
The decoder reads binary code, resolves instructions and
translates them into LLVM IR instructions. This process
transforms platform-specific executable files into uniform L-
LVM IR code. The front-end applies various static analyses
on the translated LLVM IR code. It checks for the presence
of statically linked code to reduce the amount of data to be
be analysed. It recovers local variables, used ABI, functions
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and their arguments, etc. [11]. Unstripped executable files
can be decompiled more easily and precisely by utilizing de-
bugging information or symbols. The decompiler supports
both mainstream formats PDB and DWARF [20].
The front-end part is also responsible for the code de-
optimization. Its task is to detect the used compiler opti-
mizations and to recover the original high-level language (H-
LL) code representation from the hard-to-read machine code.
One example of this optimization type is the usage of in-
struction idioms [21]. An instruction idiom is a sequence
of machine-code instructions representing a short HLL con-
struction (e.g. arithmetic expression) that is highly-optimized
for its execution speed and/or size. A notoriously known ex-
ample is the usage of an exclusive or to clear the content of a
register (i.e. xor reg, reg) instead of an instruction as-
signing zero to this register (i.e. mov reg, 0). Many oth-
er types of compiler-optimized LLVM IR sequences have to
be re-arranged and emitted in their de-optimized form to the
subsequent decompilation phases. A more detailed descrip-
tion of this process can be found in [22].

D. Middle-End

The LLVM IR code generated by the front-end part contain-
s a complete behavioral description of each instruction used
within the original application. In practice, such a complex
description may be sizable and slow to analyse in the further
decompilation phases. In many cases, however, the input L-
LVM IR representation can be reduced and optimized. For
example, each side-effect of an instruction (e.g. setting a
register flag based on instruction operands) is represented vi-
a the LLVM IR code, but results of these side-effects may not
be used anywhere. Therefore, the front-end output is further
processed within the middle-end phase, which is built on top
of the LLVM’s opt tool. This phase is responsible for re-
duction and optimization of this code by using many built-in
optimizations available in LLVM as well as our own passes
(e.g. optimizations of loops, constant propagation, removal
of dead code, control-flow graph simplifications).

E. Back-End

The target HLL is produced from the optimized IR code by
the back-end part. At this moment, we can generate out-
put code in two languages: C and a Python-like language.
The latter one is similar to Python, except that specific con-
structions without a support in Python are replaced by C-like
constructions (e.g. pointers and gotos). The reason behind
choosing a Python-like language as one of the possible target
HLLs stems from the fact that Python is dynamically typed
and uses just int as the basic integral type. This means that
the code is not cluttered with explicit types and type casts,
which is usual for C code. Moreover, Python uses whitespace
indentation, rather than curly braces, to delimit code block-
s. Thus, the resulting code may be more readable, which is
useful in cases when the code is supposed to be just analysed,
not recompiled and run.
The back-end transforms internal input LLVM IR into our
own intermediate representation: backend intermediate rep-
resentation (BIR). The reason for an additional internal rep-
resentation is that LLVM IR is fairly low-level. Therefore,
we need a high-level representation that will be used after the

identification and reconstruction of high-level control-flow
constructs, such as loops and conditional statements.
Finally, the obtained BIR is optimized for the last time, and it
is emitted in the form of the target HLL. Other outputs from
the back-end are the call graph of the decompiled applica-
tion, control-flow graphs for all functions, and an assembly
representation of the application.

III. Machine-Code Snippet Decompilation

This section describes in detail the concept of machine-code
snippet decompilation, introduced in Section II. At first, the
wrapping process is explained. Then, the quality-improving
changes of the decompiler’s front-end are examined. The
section is concluded with a discussion of possible drawbacks,
imperfections and future improvements of our approach.

A. Wrapping Process

The goal of the wrapping procedure is to create a valid ob-
ject file from a raw binary input. The generated file is then
passed to the preprocessing phase as an ordinary executable,
making the whole pre-preprocessing transparent to the rest
of the decompilation.
We make use of the GNU objcopy [23] utility from the GNU
binutils [24] package. Objcopy is able to copy the contents of
one object file to another, modifying it in the process. Sup-
ported modifications include various kinds of file header, sec-
tion or symbol manipulations, which can be used to achieve
our goal. The most important capability for our needs is to
write a destination object file in a format different from that
of the source object file. Given the fact that one of the sup-
ported input/output targets is binary, the objcopy utility is
a suitable utility for the job. To successfully use objcopy,
the snippet’s original architecture (Intel x86, ARM, MIPS,
PIC32, PowerPC), file format (ELF, PE), and endianness (lit-
tle, big) have to be explicitly specified, since it is impossible
to deduce them from the raw data.
The transformation starts by choosing an objcopy variant cor-
responding to the specified architecture and object file format
(there is a stand-alone objcopy for each combination). This
allows to select an appropriate output target and machine,
knowing that it will be supported by the application. For
example, if the user chooses x86/ELF, the output machine
and target will be i386/elf32-i386. For ARM/PE/lit-
tle endian, it will be arm/pei-arm-wince-little. It
would be possible to use a single objcopy compiled with all
of the necessary architectures, but using objcopies shipped in
the standard-architecture developer’s packages seemed more
convenient to us. The next process is dependent on the de-
sired target object file format.
For ELF, choosing binary as an input target will make
objcopy create a new object file with a single section filled
with the input’s contents. At first, this section is named
.data, but flags typical for an executable code are set and it
is then renamed to .text. To increase the quality of the de-
compiled code, two more object file parameters are always
set. The first one is the virtual memory address (VMA) of
the created code section. It is a memory address where the
section is supposed to be loaded before an actual execution.
The correct value plays an important role in case the machine
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code contains absolute references (e.g. function jumps) or
other constructs relying on the exact memory mapping. In
case the user cannot provide the original virtual memory ad-
dress, the default architecture value used by our compiler is
set. In most cases, this will not improve the quality of the
output since even the smallest difference has the same neg-
ative effect as a huge deviation. However, it is safer than to
set a non-zero value that might confuse some programs in the
decompiler’s tool chain. The load memory address (LMA) is
always set identically to the VMA.
The second file parameter is the entry point address. It is the
starting address for the execution. In some situations, it can
helpful during function detection. The user should provide
the original entry point address of the main() function, or
the position of some other function he wishes to decompile.
The value should make sense in the context of given VMA–
it should lie within the range defined by VMA as a lower
bound, and section’s size as a maximum offset. If only one
of the load memory address/entry point couple is specified
by the user, we use this value for the second parameter as
well. If none of them are provided, we set the entry point to
the default VMA.
A simplified example of the described transformation of a
raw binary input.raw into the ELF file output.elf is
shown in Figure 2.

i686_pc_linux_gnu_objcopy input.raw output.elf
-I binary -O elf32-i386 -B i386
--set-section-flags

.data=contents,alloc,load,code,data
--change-section-vma .data=0x8048000
--change-section-lma .data=0x8048000
--set-start 0x8048000
--rename-section .data=.text

Figure. 2: A simplified example of raw binary data to an
x86/ELF executable file transformation by using the objcopy
utility.

If the same procedure described for an ELF object file were
used for PE transformation, PE’s NT header entries would re-
main unset (all values zeroed). Unfortunately, objcopy is not
able to manipulate them, making the output file unsuitable
for the upcoming analyses. For this reason, a slightly differ-
ent approach is employed. First, the corresponding objcopy
and compiler for the specified architecture are chosen. Then
a simple hello world program is compiled by using the se-
lected compiler. Now, it is possible to remove the existing
.text section from the created executable file and injec-
t a new one. It will be created from the data of the input
raw binary file. The original section is removed by using the
-j parameter, which preserves only the indicated section-
s. Providing it with a non-existent name will remove all the
original sections. The setting of the other file properties is
identical as in the ELF case above.
A simplified example of a raw binary input.raw injection
into the valid PE file input.exe producing output.exe
is shown in Figure 3.

arm_mingw32ce_gcc -o input.exe hello.c

arm_mingw32ce_objcopy input.exe output.exe
-j .non.existent.section
--add-section .text=input.raw
--set-section-flags
.text=contents,alloc,load,code,data

--change-section-vma .text=0x11000
--change-section-lma .text=0x11000
--set-start 0x11000

Figure. 3: A simplified example of raw binary data to an
ARM/PE/little endian executable file transformation by us-
ing the objcopy utility.

B. Front-End Modifications

So far in the front-end development, we have assumed the de-
compiler is processing a whole object file. This is no longer
the case for the machine-code snippet decompilation. If we
want to get a good-quality output, we have to take into ac-
count the fact that the input may be incomplete. There are
the following main issues.

1. Not all present functions have to be reachable from the
selected entry point.

2. The function located at the specified entry point may not
be called anywhere within the program.

3. Not all functions called in the program have to be de-
fined in the program.

The above three problems are demonstrated on a raw
binary code decompilation of a simple function named
function_1() defined in Figure 4.
The whole application is compiled into a MIPS/ELF/little en-
dian executable file and only the machine code for the select-
ed function is cut out and decompiled. No other function or
data sections are present in the reversed raw binary file. The
created section is set with the correct VMA, which is equal
to the input’s entry point. The decompiled result is shown in
Figure 5.
The first problem does not occur in this simple example with
only one raw function. By default, the decompiler produces
only code reachable from the program’s start address. This
is, however, not a desired behaviour for reversing code s-
nippets since the original functions’ connections might not
be preserved. The solution is to always analyse the entire
input if it comes from a raw binary. Because the original
function_1() is located at the entry point address, it is
named entry_point() in the generated HLL code.
The second problem is that it is not called anywhere in the
cut raw code. This makes our original function-arguments-
detection algorithm inapplicable since it recognises argu-
ments based on the intersection between objects written be-
fore the function call, and objects read in the function’s body.
Because there is no function call, there are no detected argu-
ments. We solve this problem by applying weaker condition-
s to the detected uncalled functions’ arguments. All objects
read before they were written (undefined objects) are consid-
ered to be arguments. This may, however, cause a significant
increase of falsely recognised arguments and it represents a
challenge for the future research.
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#include <stdio.h>
#include <stdlib.h>

int function_2()
{

return rand();
}

int function_1(int a, int b)
{

int c = function_2();

if (c) {
if (a > 10) {

printf("case 1");
}
else if (b > 10) {

printf("case 2");
}

}

return 0;
}

int main()
{

function_1( rand(), rand() );
return 0;

}

Figure. 4: A simple example used for a raw binary de-
compilation demonstration. Only function_2() is cut,
wrapped, and reversed.

#include <stdio.h>
#include <stdlib.h>

/* ------------ External Functions ----------- */
int unknown_8900368(); // function_2()
void unknown_89004d4(); // printf()

/* ----------- Function Prototypes ----------- */
int32_t entry_point(int32_t a1, int32_t a2);

/* ---------------- Functions ---------------- */
int32_t entry_point(int32_t a1, int32_t a2)
{

if (unknown_8900368() == 0) { // function_2()
return 0;

}

if (a1 >= 11) {
unknown_89004d4(); // printf()
return 0;

}
if (a2 >= 11) {

unknown_89004d4(); // printf()
}

return 0;
}

Figure. 5: The result of the machine-code snippet (compiled
for MIPS/ELF/little endian) decompilation for the example
in Figure 4.

The third problem is the absence of definitions of called
functions function_2() and printf(). The prob-
lem is more serious for the function_2() call because
the whole function_1() body depends on the value

set by it. To solve the issue, we modify the front-end
so that it treats unknown function calls as external func-
tion calls. In this way, procedures do not have to be de-
fined, but their calls are analysed and proper return ob-
jects are set. Functions are named by using the pattern
unknown_<call_address>(). Because there is no da-
ta section, strings used at printf() calls are not found. As
in the previous case, a better detection of arguments for such
functions will be addressed in the future research.

C. Possible Drawbacks

The described machine-code snippet decompilation offers
only the basic options of object file format creation. It is only
possible to transform one input raw data file into a single ex-
ecutable section mapped in memory at a continuous address
space. It is, however, possible that users will demand more
advanced wrapping capabilities. For example, a creation of
multiple sections with different properties (code, data, etc.)
and memory layouts (VMA/LMA). If this is the case, our
future work will respond to the most popular user requests.

IV. Online Decompilation Service

Our decompiler is not yet available as a stand-alone, down-
loadable package; however, it is available in the form
of an online web service. The home page is located at
http://decompiler.fit.vutbr.cz. Apart from
the decompilation service itself, whose description is given
shortly, there are news, a list of our publications, partners,
and a contact form.
On the “Try Decompilation” page, there is a form where you
can set up a decompilation job. You can either choose to de-
compile a binary executable file, a machine-code snippet or
to provide a C source code, which we first compile and then
run our decompiler on the compiled file. Each of these op-
tions have different requirements on additional information
you have to provide:

• Binary file. You can either choose an automatic detec-
tion of the file format and architecture or select it man-
ually.

• Machine-code snippet. You have to select the target ar-
chitecture (Intel x86, ARM, MIPS, PIC32, PowerPC),
file format (ELF, PE), and endianness (little, big). In
addition, you can specify a virtual memory address and
an entry point address used by the object file created
from the raw binary data. It is strongly recommended to
do so since it might significantly improve the quality of
the generated HLL code.

• C source code. You have to select the target architecture
(Intel x86, ARM, MIPS, PIC32, PowerPC), file format
(ELF, PE), and compiler options.

As the target language, you can either choose C or a modified
version of Python. To start the decompilation process, press
the “Decompile” button.
After that, on the results page, you can see a real-time
progress bar, including a log of what is happening. After
the decompilation is complete, you can view the decompiled
code alongside with the output from our disassembler. The
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outputs are linked together by addresses and function names,
so when you click on a function in the C code, it shows you
the corresponding assembly code. Moreover, you can view
or download control-flow graphs and a call graph, and down-
load the compiled binary file.
The web service is implemented as a thin client, i.e. you
only need a web browser to use it. Internally, it is a PHP
application producing XHTML, CSS, and JavaScript. To en-
sure proper compatibility among various web browsers, we
use the jQuery library [25]. To enhance the user’s experi-
ence during the decompilation, we use AJAX to periodically
update the progress bar, log, and links to the results.
We have chosen to implement and provide the decompilation
service as an online web service for the following reasons.
First, users do not need to install anything on their computer
because only an ordinary web browser is needed. Moreover,
there are little to no requirements on the user’s computer in
terms of computational demands because the decompilation
runs on a remote server. Second, in the future, our web ser-
vice may be extended by a public API for starting decompi-
lation jobs and obtaining the results. This will allow users to
write custom applications for their mobile devices, such as
smartphones and tablets. Finally, in terms of manageability,
all application changes can be made directly in the remote
server and immediately take effect on the clients. This sim-
plifies periodical updates of the decompilation service and
ensures that the clients use the latest stable version that is
available.
This online service can be applied in various use cases. Some
of them are briefly described next.

• Static code analysis. It can help in the analysis of ma-
licious software [10]. As it is shown in Section V, the
user can analyse various executable files from untrust-
worthy websites or vendors. For example, let us sup-
pose that there is a suspicion that an application sends
some data over network and it should not do that. It
can be processed by the online decompilation service
and the decompiled code can be reviewed for a usage
of network-related functions like InternetOpen on
Windows or connect on Linux.

• Source code migration. The possibility of various out-
put languages gives a good background for code migra-
tion [26]. The user can have an application with avail-
able assembly code, and after using the service, the user
can have the code of the application in C or Python with-
out any difficult rewriting of the assembly code. The
decompiler tries to produce code which can be directly
recompiled in the case when the output is in the C lan-
guage. Therefore, one can take an executable file from
Linux on the ARM architecture, decompile such an ex-
ecutable file, and use the resulting code on a differen-
t architecture. However, we do not take into account
some special cases as compilation of source from a de-
compiled Windows executable file with a Linux com-
piler. This would be almost surely terminated by some
WinAPI function call.

• Compiler testing and validation. The user can check the
correctness of an executable file compiled by his or her
own compiler or by some alternative compiler. In the

early stage of compiler development, it can be helpful to
verify produced binaries by more alternative ways and
the decompilation can be one of them.

• Embedded software inspection. With its machine-code
snippet decompilation capabilities, it is possible to anal-
yse even programs from which the user do not have the
original executable files. This is typical for a firmware
loaded in embedded devices. The user can dump the
running program’s image from memory into a file and
upload it to our web service. He has to select the right
combination of architecture, format, and endianness be-
cause it is not possible to automatically detect them.
He should also be able to provide the section’s origi-
nal loading address in virtual memory and the original
entry point.

V. Results

The proposed retargetable decompiler is freely available as
the previously described decompilation web service. In a
typical usage scenario, the user wants to analyse an existing
binary executable file. The purpose for this act may differ
(e.g. compiler testing, vulnerability detection, malware anal-
ysis). All the results (decompiled HLL, disassembled code,
graphs, etc.) may be displayed within the web browser or
locally after their download. Furthermore, the decompila-
tion process may be tweaked by using many decompilation
options to suit the user’s needs (elimination of unreachable
code, aggressive optimizations, etc.).
The only limitation of this publicly available service is a time
limit of the decompilation process (10 minutes for registered
users at present). The reason is to be able to serve all user
requests. The web service is regularly updated to the lat-
est stable decompiler version. The decompiler currently sup-
ports the combinations of the Intel x86, ARM, MIPS, PIC32
and PowerPC architectures and the Windows Portable Exe-
cutable and UNIX ELF file formats.
Based on the previously published results [11, 15, 27], the
decompilation results are comparable with the existing com-
mercial non-retargetable decompilers, such as Hex-Rays de-
compiler [6]. For example, we achieve over 90% accuracy of
successfully recovered functions and 91% of recovered func-
tion arguments. Furthermore, the detection ratio of originally
used compiler or packer is also high—up to 95%.
In the rest of this section, we present a case study of using the
web service to analyse malicious software. Due to space con-
straints, we demonstrate the decompiler usage on a tiny bina-
ry executable file uploaded by one of the users of the decom-
pilation service. Its size is only 2560 bytes, and its MD5 hash
is 7ef688b3765b49dc8cd0dd2c4bf79fd0. When
one tries to analyse this executable file manually by using
standard tools, he or she discovers that it is a program in the
PE format for the x86 architecture (32b).
The disassembled code of its .text section is shown in Fig-
ure 6. It was produced by the objdump utility, which is
part of the GNU Binutils package. On the first sight, there
is nothing that would indicate malicious behaviour. What
we can see is that there are several function calls, and their
arguments are passed on the stack. However, as the called
functions are not present in the executable file nor there are
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symbols for them, we cannot see which functions are actually
called. Moreover, several addresses are passed on the stack,
and there is no clear indication of what is stored at these ad-
dresses. To obtain more information, additional analyses are
required to be done.

Address Hex dump Intel x86 instruction
-------------------------------------------------
401000: 6a 00 push $0x0
401002: 6a 00 push $0x0
401004: 68 28 30 40 00 push $0x403028
401009: 68 1f 30 40 00 push $0x40301f
40100e: 6a 00 push $0x0
401010: 6a 00 push $0x0
401012: e8 39 00 00 00 call 0x401050
401017: 6a 01 push $0x1
401019: 68 4b 30 40 00 push $0x40304b
40101e: 68 00 30 40 00 push $0x403000
401023: e8 1c 00 00 00 call 0x401044
401028: 6a 00 push $0x0
40102a: 6a 00 push $0x0
40102c: 6a 00 push $0x0
40102e: 68 4b 30 40 00 push $0x40304b
401033: 6a 00 push $0x0
401035: 6a 00 push $0x0
401037: e8 14 00 00 00 call 0x401050
40103c: 6a 00 push $0x0
40103e: e8 07 00 00 00 call 0x40104a
401043: cc int3
401044: ff 25 04 20 40 00 jmp *0x402004
40104a: ff 25 00 20 40 00 jmp *0x402000
401050: ff 25 0c 20 40 00 jmp *0x40200c

Figure. 6: Disassembled code of the .text section ob-
tained via the objdump utility.

When the executable file is uploaded to our decompilation
service, its decompilation takes about two seconds, and pro-
duces the output shown in Figure 7. Due to space constraints,
we have stripped all the comments from the code.

#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <windows.h>

int main(int argc, char **argv)
{

ShellExecuteA(0, NULL,
"iexplore",
"http://91.188.59.10/report/log.php",
NULL, 0

);
CopyFileA("\\\\91.188.59.10\\smb\\sweater.exe",

"1.exe", true
);
return ShellExecuteA(0, NULL, "1.exe",

NULL, NULL, 0
);

}

Figure. 7: The result produced by the decompilation service.

From this output, it is clear what the program actual-
ly does. First, it starts MS Internet Explorer and vis-
its site http://91.188.59.10/report/log.php.
Even though the site is unavailable at the time of writing this
paper, it apparently reports to its author the fact that is has
been executed. Next, it obtains a file sweater.exe from a

remote server, names the copy 1.exe, and executes it. After
that, it exits. The server is also not available at the time of
writing.
From this analysis, we can clearly see that the program can
be considered as having malicious behaviour. And indeed,
when we check this by uploading the file to VirusTotal [28],
we see that 27 from 47 anti-virus tools have classified it as
malware.
Apart from the decompiled code, the web service produces a
call graph of the executable file, shown in Figure 8, control-
flow graph of the main function, and disassembled output.
The control-flow graph and disassembled output are not in-
cluded in this paper due to space constraints.

ShellExecuteA CopyFileA ExitProcess

main

Figure. 8: The call graph of the program.

Moreover, the results from the web service tell us that the
program is for the x86 architecture (32b), and that is was
produced by fasm [29]. A screenshot of the web page is
depicted in Figure 9.

VI. Concluding Remarks

As can be seen from the present paper, the main advantages
of our solution when compared to the existing decompilers
are retargetability (new architectures can be supported more
rapidly [10, 11]) and the fact that the decompilation and anal-
ysis can be done by simply using a web browser.
We close the paper by suggesting future research possibil-
ities. First, many todays applications are written in C++.
To decompile such applications, we will need yet more ad-
vanced analyses concerning the reconstruction of types, class
hierarchies, and use of the standard library, including the s-
tandard template library (STL). Second, the decompilation
of more sophisticated malware poses a challenge that we will
face in the near future [30].
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[14] J. Křoustek and D. Kolář, “Context parsing (not only)
of the object-file-format description language,” Com-
puter Science and Information Systems (ComSIS),
vol. 10, no. 4, 2013, pp. 1673–1702.

[15] ——, “Preprocessing of binary executable files towards
retargetable decompilation,” in 8th International Multi-
Conference on Computing in the Global Information
Technology (ICCGI’13). Nice, FR: International A-
cademy, Research, and Industry Association (IARIA),
2013, pp. 259–264.
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Jakub Křoustek (born in Jihlava, Czech Republic, 1984) is a
Ph.D. student at the Faculty of Information Technology, Brno
University of Technology, Czech Republic. He received his
MSc degree from the same university in 2009. He is cur-
rently working on the Lissom research project as the leader
of the retargetable decompiler. His current research interests
include reverse engineering, malware detection, and compil-
er design, with special focus on code analysis and reverse
translation.

Peter Matula (born in Martin, Slovakia) is a Ph.D. studen-
t at the Faculty of Information Technology, Brno University
of Technology, Czech Republic. He received his MSc de-
gree from the same university in 2013. He is currently work-
ing as a front-end developer of the retargetable decompiler.
His current research interests include reverse engineering and
malware detection, with focus on high-level data type recon-
struction.

Petr Zemek (born in Opava, Czech Republic) is a devel-
oper of the retargetable decompiler. He received his Ph.D.
in computer science from the Faculty of Information Tech-
nology, Brno University of Technology, Czech Republic in
2014. He has published many studies on formal models and
decompilation in international conferences and distinguished
computer science journals, including two books on regulated
rewriting in formal language theory.


