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albertodesouza@lcad.inf.ufes.br

Abstract: The multichannel model is a complete reassess-
ment of how neurons work at the biochemical level. Its results
can be extended into an overarching theory of how vision, mem-
ory and cognition come to be in the living brain. This article
documents a first attempt at testing the model’s validity, by ap-
plying its principles to the construction of an image template-
matching framework, which is then used to solve a Graphical
User Interface (GUI) automation problem. It was found that
the template-matching function thus implemented can consis-
tently locate required visual controls, even when template and
match differ by color palette or (to a slighter degree) feature
proportion. The article concludes by discussing the significance
of these results and directions for further research.
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I. Introduction

Today, neuroscience is besieged by two pressing questions.
On the one hand, a general theory of brain function remain-
s elusive, as most research so far have focused on specif-
ic structures or groups of cells – disconnected efforts out of
which a coherent picture has yet to emerge [1]; on the oth-
er, not only we don’t have a clear idea of how a whole brain
works – we may have failed to grasp what individual neurons
do, as well.

Classical neurophysiology states that a neuron’s immedi-
ate output – a “spike” – is a 1-bit datum, by itself unfit to
express virtually any meaning. This is a direct consequence
of the much verified fact that all spikes produce an electri-
cal potential of about the same amplitude: without evidence
of any other kind of signal being transmitted, we are led to
conclude that a single neuron cannot produce any response
more elaborate than whether it’s “on” or “off”. Therefore,
only by combining multiple spikes in some form of code can
any meaningful message be communicated across the ner-
vous system. In particular, frequency-coding, where infor-
mation is thought to be encoded on the number of spikes
a neuron gives off over a fixed length of time, was for the
longest time the dominant neural code theory [2].

The problem with frequency-coding – any coding theory,
actually – is that neurons are slow. A nerve impulse’s speed
was measured for the first time by Prussian scientist Herman-
n von Helmholtz in 1849, who recorded an average speed of
27m/s [3]. This value eventually turned to be on the low end
of the scale – myelinated nerves can conduct signals at speed-
s approaching 100m/s [4] – but that’s hardly lightning speed
either. Furthermore, after a neuron discharges, it undergoes
a refractory period of about 1ms during which it cannot fire
again [5]; so, not only do nerve signals travel slowly, there
is a strict limit on how quickly they can be produced. Both
findings place heavy restrictions on how efficient a nervous
system communicating on encoded messages could be.

One might argue that the lack of speed is circumvented in
the brain by a highly parallel architecture. However, no pro-
cessing problem is composed entirely of parallelizable parts;
some sequential parts must exist, if the parallel computation-
s are to interact in any way. This sequential part will place
a restriction on how fast a task can be made to run on any
number of processing units. According to Amdahl’s Law,
for P processing units and a sequential part of length α, the
maximum speed-up S that can be achieved is:

S = lim
P→∞

1
1−α
P + α

=
1

α
(1)

In the brain, the ”sequential part” is the exchange of spikes
among neurons. Therefore, far from making it unimportan-
t, the brain’s highly parallel architecture turns the speed of
spikes into the dominating performance factor: given how
fast spikes travel along the axon, the time a neuron requires
from one spike to the next, and how far nerve impulses have
to travel from sensory organs to the brain and then back to
the motor system, a limit can be set on an animal’s optimal
reaction time.

From the early 1990’s onwards, experiments on bats and
flying insects managed to establish how fast those creatures
can change course to avoid an obstacle after they notice it [6].
It was found that this time window – from the moment an
obstacle comes into view to that of the motor response – is
about as short as the time a single spike would take to tra-
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verse the involved neural pathways. It is not, obviously, that
a single spike on a single neuron would somehow recognize
the obstacle, plot and execute an evasion; the point is that no
matter how many neurons are involved in the operation, each
one has only enough time to produce a single spike.

One way around this experimental result is to remark that
there is apparently only a single spike present – but some-
where, in some other pathway, a cycling or otherwise base-
line signal exists which could provide a reference for decod-
ing that lone impulse. It’s a clever workaround that preserves
the concept of a neural code – though it’s hard to imagine
how an impulse produced at some random moment, when
measured against a predictable reference, could produce just
the right meaning that was required at that given instant.

A simpler, if more heretical alternative, is to consider the
possibility that no code exists – a single spike is somehow
able to transmit meaningful information from one neuron to
the next. The multichannel neuron model proposed by John
Harris [7] takes this route and, by working out the theoretical
consequences, brings together a number of overlooked ex-
perimental results into a surprisingly feasible theory of how
the brain works.

Unfortunately, for all the sense it makes, the multichannel
model stills lacks an experimental body that would unequiv-
ocally validate its claims; in fact, at least where its basic bio-
chemical propositions are concerned, the technology to study
neurons at the required scale may be years ahead. Mean-
while, however, there is nothing preventing us from look-
ing into other ways to investigate its validity – for example,
through computer experiments.

Computers are often employed as substitutes when direct
experiments would prove unwieldy [8] – software tools such
as simulation suites can be used to test the viability of bio-
logical models, helping advance our understanding of living
beings. This also works the other way around, as Computer
Science researchers often take a page from biology when de-
signing solutions for problems in their own domain. Indeed,
over the years, this has proved a very productive partnership,
particularly in fields such as neuroscience and studies on vi-
sion, both biological and mechanical.

This article (an expanded version of our original paper [9])
presents a first attempt at evaluating the multichannel neuron
model and related theories through computer experimenta-
tion. It starts by summarizing an overall model of brain func-
tion founded on the concept of multichannel neurons; then it
introduces Skeye, a programming framework implementing
a limited version of that model. The framework is used to
solve a problem of desktop automation involving template
matching, the computer equivalent of the visual search skill
found in sighted life forms. The article concludes by dis-
cussing the significance of the experiment’s results, its short-
comings, and directions for further research.

II. Related Work

The dialogue between neuroscience and computing, with
the aim of explaining and perhaps even reproducing hu-
man cognitive skills, goes back to the invention of the per-
ceptron algorithm by Frank Rosenblatt in the late 1950’s
[10]. But it was only in the late 80’s, with the develop-
ment of back-propagation [11] that the related connectionist

approach flourished as an AI field. However, much as it-
s source material, neuroscience-inspired computing research
has focused more on solving specific problems (such as pat-
tern recognition) than on developing comprehensive cogni-
tion models; and conversely, research on such models is of-
ten done outside of connectionism, and doesn’t often concern
itself with the question of biological plausibility.

Deep learning [12], connectionism’s most promising de-
velopment in recent time, illustrates this trend. While its
techniques incorporate a number of recent results from neu-
roscience (such as the ”convolutional” nature of neuron lay-
ers in the primate visual pathway), it is for the most part con-
cerned with constructing better pattern recognition machines
– doubtless an important goal, but rather narrow when com-
pared to the full range of human cognition. On the other
hand, general problem-solvers such as Goedel Machines [13]
could theoretically exhibit many of our cognitive abilities –
but are too departed from the biological realm to constitute a
plausible model of biological cognition.

A conspicuous exception to this divide is the Hierarchical
Temporal Memory (HTM) model [14], which intends to be at
once a biologically-plausible general theory of intelligence.
Its progress over the years has been encouraging, however
HTM is still very computationally expensive, particularly as
problem sizes increase [15]. This impact both the scale of
experiments it allows, and its applicability as a software tool.

III. A Model of Visual Cognition

In this section we construct a model of visual cognition
founded on the concept of a multichannel neuron. We s-
tart from a short review of eye optics, working our way up
through conjectures on neurobiology until we arrive at an
abstract model of the brain as a data processing device. As
we go, we draw theoretical support and inspiration from a
variety of sources; though familiarity with them all is not
required, the reader is encouraged to check the reference ma-
terial [2, 6, 7, 16–18] for a more complete discussion.

A. Images and Diffraction Patterns

In this age of ubiquitous digital cameras and display devices,
we might be forgiven for taking visual records for granted.
Yet, for the longest time one’s own eyes were virtually the
only reliable source of visual accounts: though it was known
since Antiquity that light passing through a pinhole projects
an image of its source on an opposing surface, it was not until
the 19th century that the first photochemical pictures were
recorded. Even then, the contraptions used to capture such
images differed little from the camera obscura employed by
artists and scientists alike for centuries before, a drawing of
which is shown on Figure 1.

This kind of drawing is a typical example of Geometri-
cal Optics, where light is modeled as particle rays traveling,
unless deflected, along straight lines. This is a valid abstrac-
tion for most scenarios in classroom Optics; however, its rel-
atively simple mathematics is ultimately too limited to tru-
ly describe the process of image formation, where the phe-
nomenon of diffraction takes center stage.

The phenomenon of diffraction was first described by
Thomas Young in the early 19th century. In his classical
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Figure. 1: A model of image formation according to Ge-
ometrical Optics. Light rays coming from an infinitude of
points at a source object (such as sample points A, B and D)
pass through the aperture of a camera obscura (C) and are
projected on inverted locations at the opposite wall (such as
sample locations a, b and d). Image retrieved from [19].

double-slit experiment – as seen in Figure 2 – he demonstrat-
ed how light, passing through apertures of size comparable to
its own wavelength, exhibits interference patterns character-
istic of wave dynamics. This is an experiment of historical
significance, as it demonstrated for the first time that light,
despite its many instances of particle-like behavior, could al-
so be made to behave as a wave.

Figure. 2: In Young’s double-slit experiment, a light beam is
projected against an obstacle through which two minuscule
orifices (the “slits”) were pierced. As it comes out on the oth-
er side, interference patterns characteristic of wave dynamics
are observed. The pattern is very complex at first, but quick-
ly settles down to expanding “beams” intervened by bands of
darkness. Image retrieved from [20].

In the early 1870’s Ernst Abbe, while working for mi-
croscope manufacturer Carl Zeiss, realized that just as in Y-
oung’s experiment, light coming from many periodic struc-
tures found in nature (e.g. insect scales) could be modeled as
spreading in waves, which at first interact in intricate ways,
but then settle down into a stable pattern – the object’s im-
age. In this view, the object itself could be abstracted as not
a light source, but a diffraction grating – an opaque surface
full of tiny orifices, blocking and diffracting light as it passes
through, warping it in just the right way to produce an im-

Figure. 3: A simplified model of image formation according
to Wave Optics. Light coming from a “diffraction grating”
(an abstract model for an illuminated object) passes through
a lens, producing two interference patterns: a diffraction pat-
tern at the back focal plane, and an image of the object at the
image plane. Image retrieved from [21].

age. Abbe’s original model was restricted to periodic struc-
tures under coherent light conditions, but it has since been
generalized into an overall theory of imaging formation com-
prehending non-periodic objects under semi-coherent light –
that is, the objects and light of everyday life.

The resulting theory of Wave Optics describes the process
of image formation in quite a different way from the ray-
tracing account of Geometrical Optics. As seen in Figure 3,
light coming from an object (the “diffraction grating”) passes
through a lens or small aperture, and on its way out produces
two distinct interference patterns: a diffraction pattern at the
back focal plane, and an image of the object at the image
plane.

It turns out that the diffraction pattern and the image are re-
lated by the mathematics of the Fourier series – more specif-
ically, the diffraction pattern is the Fourier transform of the
image. This is a remarkable feature of Wave Optics: many
operations on images, such as edge sharpening and detection,
smoothing etc. can be implemented by calculating the Fouri-
er transform of an image, performing some simple operation
on the transform (e.g. applying a low-pass filter) and then
calculating the inverse Fourier transform on the result (see
Figure 4 for a typical example). A device meant to enhance
or otherwise manipulate captured images could shortcut a
lot of processing work by, instead of calculating the Fourier
transforms of captured images, getting them “for free” from
the back focal plane of its imaging apparatus.

B. The Eye As A Fourier Optics Device

The Chinese philosopher Mozi described the working prin-
ciples of the camera obscura in the 5th century BCE, yet it
wasn’t until the 17th century CE that Johannes Kepler first
conjectured that they might also apply to the human eye. This
is a common trend in the history of science: often, theories
developed to describe man-made devices are later found to
be applicable to structures or processes that already existed
in Nature. Likewise, the usefulness of the Fourier transfor-
m as an image manipulation tool has been known to us for
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Figure. 4: Image enhancement via Fourier transform. The
Fourier transform (bottom left) of the original image (up-
per left) is changed by increasing the values of all compo-
nents past a certain frequency threshold (i.e. distance from
the center); the result (bottom right) is then passed through
the inverse Fourier transform, producing the enhanced image
(upper right). Image retrieved from [22].

scarcely a century; how much of a stretch is it to imagine
Nature might have got to it before us?

Figure. 5: Longitudinal section diagram of the human eye.
Light rays are deflected by the lens and converge on the im-
age plane over the retina. The back focal plane is too close
to the image plane to be drawn separately.

Figure 5 shows a longitudinal section diagram of the hu-
man eye. Light rays are shown to be deflected by the eye’s
lens and converge directly on the image plane. The back fo-
cal plane is not depicted, but this omission is not accidental.
The thin lens equation:

1

o
+

1

i
=

1

f
(2)

Where o, i and f are respectively the object’s, the image
plane’s and the back focal plane’s distances from the lens,
reveals that, as objects get farther from the imaging appara-
tus, the back focal plane gets ever closer to the image plane.
In the human eye, the retina is on average about 22mm from
the lens; in practice, virtually the whole world is “in infinity”
from our eyes. As a result, both the back focal plane and im-
age plane get stacked over the retina – not actually merged,
but too close to be drawn apart in the scale of the illustra-
tion above – and accommodation ensures they will be kept
that way. The wavelength of visible light is in the range of
390 to 700 nanometers (10−9m), while the outer segment of
the retina is about 25 micrometers (10−6m) thick; if we take
this for the thickness of photosensors, then there is sufficient
space for both the back focal plane and image plane to be
recorded.

So it is at least physically possible for the eye to capture
the diffraction patterns (that is, the Fourier transforms) of the
spatial images projected onto it. But what for? Or in other
words, is there any pressing problem of vertebrate vision,
that evolution would have to recourse to a tool as sophisticate
as Fourier optics in order to solve it? In fact there is, and it’s
one of the deepest mysteries in the narrative of vertebrate
evolution.

It is a well-known fact that the vertebrate retina is “wired
backwards” – a relatively thick tangled mass of nerve and
glial cells stands between projected images and the photore-
ceptors, which point away from the eye aperture instead of
towards it (see Figure 6 for a SEM image of the human reti-
na, with the photoreceptor layer near the bottom). Over the
years this apparently “sub-optimal” (or at any rate, counter-
intuitive) arrangement has been explained in various ways –
see [7] for a particularly intriguing treatment – as well as fu-
eled much polemic on the mechanics of evolution. One thing
is certain, though: while the inner retinal layers are fairly
transparent overall, its inhomogeneity causes it to scatter in-
coming light, producing a blurring effect that should affect
our ability to see the world in detail.

Figure. 6: Scanning Electron Microscope (SEM) image of a
longitudinal section of the human retina. The vertical struc-
tures at the bottom of the image are photorecptors, while the
above layer is formed by nerve and glial cells. Image re-
trieved from [23].
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Obviously we don’t forever see the world from behind a
window of frosted glass, so the blurring effect caused by the
inner layers of the retina must be somehow accounted for.
This problem is sometimes explained away by the fovea, the
small spot in the retina that is mostly clear of intervening
tissue; however, while the fovea’s role of ensuring clearer vi-
sion is indisputable, many sharp-eyed vertebrates (including
all non-primate mammals) have no fovea as such. It seem-
s unlikely that nearly all vertebrate species would possess
functional eyes, yet only a few could picture the world in any
level of detail – especially as the sense of vision imparts so
much essential information to predator and prey alike.

Could it be that before the evolution of the fovea, verte-
brates had already arrived at a way to compensate for the
scattering effects of the retina’s backward wiring? As far as
the optics of the eye are concerned, there is no reason why it
couldn’t be done. Processing power shouldn’t be much of a
problem either: since the optical characteristics of the blur-
ring layers are fairly fixed (or at worst, change very gradu-
ally over time), it is well within the ability of the vertebrate
nervous system to “hard-wire” a Fourier transform into it-
s base visual processing structures. We know that vision is
“learned” by the brain during its early stages of development
– kittens who have had one eye sewn shut for a number of
weeks since birth become “blind” from that eye, even though
the eye itself is physically perfect [5] – so that “learning”
process could well include the development of a “deblurring”
operation.

Another argument in favor of the presence of Fourier pro-
cessing in the visual pathway is the apparent and very curi-
ous correlation between foveated eyes and intelligence. It’s
not just that primates happen to be the only mammals with
foveae. Birds, whose large eyes often feature two or even
three foveae, have been found to be remarkably smart – some
species can count, use tools or recall specific memories [24]
– yet their brains don’t seem correspondingly developed. If,
however, the bird brain evolved at first mainly to perform
the computations required to produce cleared-up retinal im-
ages from their Fourier transforms, and one day it was partly
relieved from this toil by the evolution of foveae – it seem-
s natural to imagine the surplus processing power would be
redirected to other tasks, such as improved cognition.

Unfortunately, this fledging model of visual cognition falls
short of one insurmountable obstacle: the so-called “neural
bottleneck” constraining information flow from the retina in-
to the brain. The retinal ganglion cells are outnumbered by
photoreceptors at a rate of 1/100; if, as is the current un-
derstanding of neuroscience, each neuron can only transmit
a single binary signal (either a 0 or a 1) per spike, there is
simply not enough bandwidth to relay images – either spatial
or Fourier-transformed, and certainly not both – directly to
the brain. Of course we could imagine some coding strat-
egy to transmit the data; however, the gap between retinal
projection and conscious realization of an image is known to
be of 100ms in average for humans. With axon transmis-
sion speeds no faster than 100m/s and an obligatory recov-
ery time of about 1ms between spikes, it simply cannot be
done in anything approaching the immediacy with which we
see the world.

C. The Brain As A Fourier Processing Machine

Computer Scientists have long divined that an effective neu-
ral architecture cannot be built on single-bit units. The earli-
est Artificial Neural Network model, the single-layer percep-
tron, was based on abstract “neurons” that could only out-
put a 0 or 1 for a value; however, despite early promise, it
was eventually shown to not work for many classes of prob-
lems. When the original model was reworked into the more
capable multi-layer perceptron, output range was expanded
to any real value between 0 and 1. The same is true for the
more recent convolutional networks [25]. Weightless neu-
ral networks [26] do work on binary data, but each “neuron”
handles whole arrays of bits at a time, not just a single value.

If software-simulated neurons operating at the speed of
light could not be made practical before its domain was ex-
tended beyond single-bit values, there’s seldom reason to be-
lieve biological neurons, operating at frequencies as low as
1KHz, could manage. We may have not found conclusive
evidence of it yet – but a multi-valued output might neverthe-
less lurk inside biological neurons, working in ways outside
the reach of our current research instruments. In the multi-
channel neuron model [7], adjacent sodium channels [16] as-
semble to form multiple 1-bit “wires” along an axon’s length.
Neurons then become multichannel cables. Signals of identi-
cal measured amplitude can convey quite different numerical
values, depending upon which wire they’re coming through.
Figure 7 illustrates the concept.

Figure. 7: Model of a multichannel axon membrane. Indi-
vidual wires are formed by an assembly of adjacent sodium
channels. A single marked channel is firing. Image retrieved
from [7].

In the multichannel model neurons are both digital, in that
output values (i.e. channel numbers) are discrete, and analog,
in that channel numbers mirror (are analogue to) some phys-
ical value. There is no need for any encoding, in frequency or
otherwise: a channel number (e.g. “channel 27”) can corre-
spond to an environment quantity (“elbow bent 27 degrees”,
“brightness level 27”, etc) directly. If true, this model would
have remarkable consequences for our understanding of how
brain functions – in particular, vision and cognition – work.

Under the multichannel neuron model, the aforementioned
“neural bottleneck” between the eye and the brain doesn’t ex-
ist. If each neuron has a number (e.g. 300) of distinct chan-
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nels, and each channel is assigned to different input signals
from visual cells, then raw visual information can travel to
the brain unimpeded. This data comes in two forms:

• Spatial domain: recorded from the eye’s image plane,
which, because photoreceptors are tuned to specific
ranges within the visible color spectrum [17], takes the
form of a mosaic much like a Bayer filter – which was,
incidentally, inspired by this very property of visual re-
ceptors;

• Frequency domain (i.e. the image’s Fourier Transform):
recorded from the eye’s back focal plane.

If the brain’s processing power developed primarily to
work on frequency data from the retina, before being par-
tially freed to do other tasks by the evolution of the fovea,
it seems reasonable to assume visual memories could be s-
tored as Fourier interference patterns. For a two-dimensional
image am,n(x, y), its discrete Fourier transform Am,n(u, v)
can be defined as:

Am,n(u, v) =

n−1∑
y=0

m−1∑
x=0

am,n(x, y)e
−2πi( xu

m + yv
n ) (3)

And the inverse transform from Am,n(u, v) to am,n(x, y)
can be defined as:

am,n(x, y) =
1

mn

n−1∑
v=0

m−1∑
u=0

Am,n(u, v)e
2πi( xu

m + yv
n ) (4)

On both cases, each output term can be computed indepen-
dently of all others from the input alone; with sufficient re-
sources, the whole transform can be almost instantly comput-
ed as the juxtaposition of a great number of parallel, single-
step computations. Likewise, representing memories as in-
terference patterns allows them to be stored in a fail-resistant
form, and processed both incrementally and in parallel. In
fact, so efficient is this storage system that it doesn’t require
any particularly clever indexing strategy – memories are s-
tored linearly, indexed by its position in the time stream. In-
formation is stored wholesale, and when specific fragments
are required, they can be extracted by operating on the inter-
ference patterns.

The brain model enabled by the multichannel neuron can
be thus summarized as a computing machine where:

• Input is provided as pairs of matrices – a two-
dimensional mosaic in the spatial domain and its Fourier
transform in the frequency domain;

• Successive inputs are stored linearly, indexed by time of
acquisition;

• Specific constructs within inputs are specified as ex-
tracting operations;

• Information is processed mainly in the frequency do-
main, by manipulating the Fourier transform, with oc-
casional transforms back to the spatial domain in order
to relate the computations to the physical world.

Even though its validity as a model of brain function rest-
s on the concept of a multichannel neuron, clearly there is
nothing about this architecture that actually requires a neu-
ral processing substrate to work. This provides a convenient
path for experimentation: first implement the model with-
out regarding its neurological roots (which at this point are
just conjecture anyway), and later, if results are encouraging,
work in the direction of more closely matching the biologic
domain.

In the next section we begin to devise that first implemen-
tation.

IV. Architecture of Skeye

Skeye is a new programming framework developed specif-
ically for the purpose of studying the multichannel neuron
model. Currently in its early stages of development, it is an
Open Source project available on the web [27]. Skeye is de-
veloped in Python, on top of third-party packages NumPy
[28] and SciPy [29]. The combination of Python, NumPy
and SciPy makes for agile development without sacrificing
speed too much. Its architecture can be divided in two layer-
s: the base package skeye implements the platform’s core
logic as a loosely-coupled library of processing functions,
which in turn are used as building blocks to implement the
skeye.cogs framework. The motivation for this division
is that no one framework will be applicable to all problems:
therefore, rather than try and shoehorn problems into a mod-
el that doesn’t quite fit, it’s best if the user can take a step
back and tap into a set of building blocks from which she can
build a more customized solution. It also provides a founda-
tion for additional frameworks to be built into the platform in
the future.

Functions in the base package can be divided in three cat-
egories:

• Data processing algorithms – these implement the
biological- and cognitive-inspired algorithms that
prompted the development of Skeye;

• Data processing facilities – these implement common
operations that simplify the construction of more com-
plex functions;

• Programming facilities – these implement common pro-
gramming patterns (e.g. conversions between data type-
s) that simplify basic programming tasks.

Data processing algorithms include functions such
as bayer(image), which converts a 3-dimensional
color image to a 2-dimensional Bayer mosaic, and
templatesearch(image, template), which
searches for a template within a larger image. Data pro-
cessing facilities include angle(a, b), which returns
the cosine of the angle between two vectors a and b.
Programming facilities include snapshot(image),
which converts an image in the Python Imaging
Library (PIL) format to a NumPy equivalent, and
effectors.desktop(command, *arguments,

**options), which implements a small set of desktop
automation operations.

The skeye.cogs package is centered around the class
cogbot (short for cognitive robot). Cogbots are simple
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programmable agents that can be described in terms of a pre-
defined memory that defines the agent’s initial state, and a se-
quence of commands that implement its behavior, interacting
with both the memory and surrounding environment as they
run. When a Cogbot is activated, it executes its commands
sequentially, returning a list of the commands’ outputs after
it finishes.

Any kind of object can be specified as the bot’s memory,
but since commands will often need to query it for data, log-
ically the object must conform to their expectations. The de-
fault memory class in skeye.cogs is the reelmemory,
which behaves just like a linked list. Individual memo-
ries must of course be represented by some kind of objec-
t; currently, the only pre-defined class fulfilling this role is
visualmap, which holds together a visual snapshot (i.e. an
image) and descriptions of objects found within it. Objects
are described by sequences of operations what and where:
what “differentiates” an object from the image, whereas
where “integrates” a previously differentiated object into a
larger one.

Commands are expected to be callables that accept a s-
ingle argument context, which is set to the Cogbot it-
self. Both functions and callable objects can be used, there-
fore customizable “command classes” can be created – and
are in fact an integral part of the skeye.cogs package.
The special command classes batch and latch take se-
quences of commands as instantiation arguments: when ex-
ecuted, batch runs every command passing them the same
arguments it was invoked with and returns the list of outputs,
whereas latch passes the input arguments plus the output
of the previous command in the sequence, and returns the
output of the last command.

V. Template Matching in Skeye

The problem of template matching concerns locating, within
a comparatively much larger scene, an object that (according
to some pre-defined metric) “resembles” or matches a visu-
al prototype, or template; the object may differ significantly
from its template, or not be present at all. Efficient template
matching is critical to applications such as automated surveil-
lance, image categorization and robot navigation [30]; it is
therefore a relevant test-ground for the theories embodied by
Skeye.

The function skeye.templatesearch(image,
template) searches for a template within a larger image.
It returns a 3-tuple containing the matched image fragment,
its top left corner’s coordinates within the larger image,
and the degree of similarity between the template and
match as a real number between 0 and 1 (where 1 means a
perfect match). It implements a normalized cross-correlation
algorithm based on the convolution theorem [31].

For an image fm,n(x, y) and template tp,q(x, y), the algo-
rithm works by first normalizing both image and template by
their respective means:

F (x, y) = f(x, y)− f (5)

T (x, y) = t(x, y)− t (6)

Once image and template are normalized, their discrete

Fourier transforms are calculated, the Hadamard (element-
wise) product of the complex matrices is taken, and the result
is transformed back to the spatial domain:

M(x, y) = F−1(F(I) ◦ F(T )) (7)

The resulting “match map”M(x, y) – which describes the
template’s matching degree to each possible location within
the image – is queried for the coordinates of the biggest val-
ue. These are taken as the match’s top-left coordinates, and
starting there a section the size of the template is taken from
the image:

(u, v) = argmax
x,y

M(x, y) (8)

m = f [(u, v), . . . , (u+ p, v + q)] (9)

The cosine of the angle between match and template is
calculated:

cos θ =
m · t
‖m‖‖t‖

(10)

Finally, (u, v), m and cos θ are returned as the results of
the search procedure. Figure 8 illustrates the process.

It’s possible to imagine this process being performed, in
the context of the multichannel neuron model, by an interwo-
ven collection of processing nodes. The Fourier transforms
of the image and the template would have already been cap-
tured from the eye’s back focal plane, and would be stored
across neuron “sheets” of one neuron per pixel; a third layer
would perform the multiplication, and a fourth, the inverse
transform. Finally a fifth layer would use the similarity out-
puts to direct extraction of the match from the image’s spatial
representation, also captured previously.

Some machinery is still required to collect and manage
templates. In conformance to Harris’ visual memory mod-
el, visualmap objects store whole images, along with la-
beled descript objects which describe how templates are
separated from recorded images in terms of “differentiation”
(what) and “integration” (where) operations. A differenti-
ation is just a cropping operation: the corresponding what
object stores the row and column ranges which demarcate
the template. Integration is more involved – it allows, given
the coordinates of some template, to match a larger template
to which it belongs. These larger templates are described as
labeled row/column ranges in visualmap objects; where
objects then look among these ranges to find which of them
encompasses the smaller template.

In fact, a descript object containing a sequence of
what and where operations doesn’t just specify a template:
since both classes also encapsulate the template-matching
logic that implements differentiation and integration, it also
constitutes an “executable” sequence of template-matching
operations – or in other words, a template-matching program.

When a Cogbot is in execution, a command may recover
a visualmap from the bot’s memory, then query it pass-
ing an input image and template label. The image is then
turned into a top-level percept object and passed along
the visualmap to the first operation (likely a what) in
the labeled descript: using information from its parent
visualmap, the operation produces a match in the form of
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(1)

(2)

(3)

(4) (5)

Figure. 8: Fourier template search process. Bayer-filtered
image and template (1) are Fourier-transformed (2) and the
resulting interference patterns are multiplied element-wise
(3). The result is then inverse-transformed (4), producing
a “match map” which is used to locate the template within
the image (5).

a second-level percept, related to its parent by an offset.
This second-level percept is passed to the next operation,
producing a third-level percept, and so on to the end of
the sequence; the last percept produced is returned as the
sequence’s output.

Figure 9 illustrates how a template-matching program
works. The input image reproduces the Brazilian bank Itau’s
web site’s login page, with its virtual keyboard displayed;
the program intends to recover the coordinates of the button
corresponding to the digit “1”. The first what operation d-
ifferentiates the virtual keyboard from the overall image; the
second what differentiates the label “1” from the keyboard;
and the where operation integrates the label into its button.

what

what

where

Figure. 9: Example of a template-matching program at
work. The top-level percept reproduces Itau’s home banking
web site’s login page with the virtual keyboard displayed:
the program intends to recover the coordinates of the button
corresponding to the digit “1”. The first what operation d-
ifferentiates the virtual keyboard from the overall image; the
second what differentiates the label “1” from the keyboard;
and the where operation integrates the label into its button.
Full lines represent hierarchical relations between percepts.

VI. Case Study: Home Banking Automation

Home banking websites often implement login procedures
meant to be performed only by humans [32], thus providing
a good benchmark to AI systems and, in particular, machine
vision systems which intend to emulate human traits. Also,
as actual deployed services routinely used by people, they
provide an interesting balance between a controlled environ-
ment and real-world conditions. For practical reasons, this
case study is based on the home banking site of the Brazilian
bank Itau (http://www.itau.com.br). To login into
the Itau website the following steps must be performed:

1. Locate the AGÊNCIA text box and click on it;
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2. Enter the bank branch code and account number and
click the OK button, or alternatively hit <ENTER>;

3. Click the button containing the account owner’s name;

4. Enter the account’s password on the virtual keypad that
shows up and click the OK button.

Of all steps above, the last one is the most complex. The
numeric keypad contains only five keys for the ten numer-
ic digits; each key corresponds to two digits, which change
position randomly on each login; pairings aren’t fixed; and
the keypad itself may appear at different locations within the
login page. Therefore, not only no fixed button sequence can
be established – even relying on a fixed position for the but-
tons themselves is temerarious, as they can be drawn some-
where else on subsequent logins.

bot = cogbot(
 reelmemory(
  visualmap(
   'itau00.png',
   descript('agencia',
    what((88, 110), (263, 533), precision=0.9),
    what((88, 110), (318, 363))
   )
  ),
  visualmap(
   'itau01.png',
   descript('name',
    what((148, 391), (15, 438), precision=0.98),
    what((200, 391), (15, 438)),
    what((279, 328), (190, 265))
   )
  ),
  visualmap(
   'itau02.png',
   descript('keyboard',
    what((499, 806), (385, 741), precision=0.94)
   ),
   descript(0, what((655, 675), (419, 430)), where('bt')),
   descript(1, what((655, 675), (599, 610)), where('bt')),
   descript(2, what((655, 675), (659, 670)), where('bt')),
   descript(3, what((655, 675), (539, 550)), where('bt')),
   descript(4, what((655, 675), (479, 490)), where('bt')),
   descript(5, what((655, 675), (691, 702)), where('bt')),
   descript(6, what((655, 675), (571, 582)), where('bt')),
   descript(7, what((655, 675), (451, 462)), where('bt')),
   descript(8, what((655, 675), (631, 642)), where('bt')),
   descript(9, what((655, 675), (511, 522)), where('bt')),
   descript('OK', what((723, 744), (585, 630))),
   bt=(
    ((156, 216), (34, 81)),   # Button "0 ou 7"
    ((156, 216), (94, 141)),  # Button "4 ou 9"
    ((156, 216), (154, 201)), # Button "3 ou 6"
    ((156, 216), (214, 261)), # Button "1 ou 8"
    ((156, 216), (274, 321))  # Button "2 ou 5"
   )
  )
 ),
 automate('run',
r'"C:\Program Files\Internet Explorer\iexplore.exe" ' +

  '"http://www.itau.com.br"'
 ),
 latch(locate(0, 'agencia', delay=3), click(Left)),
 automate('write', '0863963445\n'),
 latch(locate(1, 'name', delay=3), click(Left)),
 zoomin(locate(2, 'keyboard', delay=3),
  latch(locate(2, 2), click(Left)),
  latch(locate(2, 0), click(Left)),
  latch(locate(2, 1), click(Left)),
  latch(locate(2, 1), click(Left)),
  latch(locate(2, 0), click(Left)),
  latch(locate(2, 9), click(Left)),
  latch(locate(2, 1), click(Left)),
  latch(locate(2, 7), click(Left)),
  latch(locate(2, 'OK'), click(Left))
 )
)

Figure. 10: Final version of the automation script for login
into the Itau home banking site. import directives were
omitted to save space. Account data has been changed for
obvious reasons.

whatwhat

Figure. 11: The “AGÊNCIA” text box is too inexpressive
on its own to guarantee a correct match; expanding the ini-
tial template to include both the “AGÊNCIA” and “CONTA”
labels, and then narrowing into the “AGÊNCIA” text box,
solves this problem. The second what operation has been
omitted for brevity.

what what

Figure. 12: Including part of the double digit button to the
template causes the digit “7” to be mismatched; narrowing
the template to only include the digits solves the problem.

Clearly the main problem is how to determine the posi-
tions of all relevant visual controls within the login page. It
turns out that descript sequences of what and where
operations can be easily created to locate such controls; from
there, it’s just a matter of employing a desktop automation
API to interact with the GUI and perform the necessary ac-
tions.

A second, deceptively prosaic problem, is the time it takes
for the web page to load. Because loading times are hard
to predict (depending on specifics of the client computer’s
specs, bandwidth and transient network load, etc), making
the agent wait a fixed time length after requesting a web
page would be impractical; a long waiting time would have
to be set, lest the agent risked reacting too early. Therefore,
some pooling mechanism is necessary for the agent to check
whether the web page it requested has finished loading, be-
fore moving on.

On skeye.cogs, this pooling mechanism is implement-
ed in two stages. The what class accepts an optional argu-
ment precision: if the similarity between the template
and its match is less than this value, an exception failure
is raised. By its turn, the command locate accepts a time
delay in seconds, an index into the Cogbot’s memory and a
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label: it sleeps for the duration of the delay, then try to exe-
cute the descript identified by the label, repeating the two
steps each time a failure is raised.

The final version of the automation script to login into the
Itau home banking site is given in Figure 10 (account data
has been changed for obvious reasons). Training screenshots
from the website were taken on a Chromium web browser
running on Linux, but tests were performed on Internet Ex-
plorer running on Windows, thus allowing for some variation
in the size and proportion of page elements. Also, on a happy
coincidence, the site’s color palette was changed shortly after
the first batch of screenshots was collected; this new layout
was also incorporated into the tests. On both cases the scrip-
t consistently succeeded in finding the required UI controls
and logging into the bank account. It also was remarkably
fast: the full script takes an average 20s (plus page loading
times) to run on a 2Ghz Intel Core i3 system, while an e-
quivalent raster search on the same system took more than
1h.

During development of the automation script there were
several instances of mismatch between templates and the re-
gions found in the test screenshots. There were essentially
two reasons for that:

1. If the template is too small, slight feature differences
may cause it to be mismatched to an inequivalent re-
gion in the test screenshot. This can be solved by start-
ing with a larger template, and using successive what
operations to narrow the found region to the required
percept;

2. On the other hand, a mismatch may also happen if a
template includes some “generic” feature that is much
larger or otherwise stronger than other, more character-
istic features. In this case, the solution is to shrink the
template to leave the “generic” feature out, and use a
where operation to include it back into the search re-
sult.

Figure 11 and Figure 12 illustrate these cases. On the first
case, the “AGÊNCIA” text box is too inexpressive on its own
to guarantee a correct match; expanding the initial template
to include both the “AGÊNCIA” and “CONTA” labels, and
then narrowing into the “AGÊNCIA” text box, solves this
problem. On the second case, including part of the double
digit button to the template causes the digit “7” to be mis-
matched; narrowing the template to only include the digit
solves the problem.

VII. Conclusion

The Skeye framework represents a first step towards evalu-
ating the multichannel neuron model in a practical context,
with so far encouraging results. The architecture Skeye im-
plements, which draws heavily from its supported model of
brain function, was found to be satisfactory for the task at
hand; its visual algorithms were robust on the face of chang-
ing environment conditions. Nevertheless it is just a start –
by no means this experiment can be taken as definitive vali-
dation of the multichannel neuron model.

While the reported test case included various real-world
variables concerning a Graphical User Interface (GUI) au-

tomation script, such as differences in rendering, irregular
response times and unexpected layout changes, it’s still a
far controlled environment when compared to object search
tasks in the physical world, where differences in lighting, s-
cale and rotation are also possible. Therefore, research ways
to abstract such differences in the search process would be a
natural next step; experiments of a more quantitative nature
are also in order, even in the context of computer environ-
ments.

In the long term, ways to reimplement the framework ac-
cording to a more “connectionist” approach should be eval-
uated. Today Skeye deliberately disregards its neural roots,
but clearly, if its architecture continues to evolve, encompass-
ing ever more diverse and complex cognitive tasks, eventual-
ly the question of the degree to which it resembles real brain-
s will arise. An implementation built upon a neural model
would be a valuable asset at this point, serving as a guide to
physiological experiments that would ultimately confirm or
deny the validity of the multichannel neuron model.

On the other hand, a practical opportunity exists for a
software framework based on the Fourier transform. The
recent popularization of multimedia-enabled “smartphones”
and “tablets” has led the processor industry to invest heavi-
ly on the development of low-power, multicore architectures
matching the requirements of mobile consumer electronics.
Increasing the number of instructions a processor can exe-
cute simultaneously seems like an elegant way to improve
nominal computing capacity while keeping cycle frequency
down (and thus conserving power), but it has the side-effect
of passing to the software the responsibility of implementing
parallelism – a task notoriously hard in the general case. The
Fourier transform, however, can be made almost as parallel
as the underlying hardware allows with relative ease. Even
if the multichannel neuron and the cognitive architecture it
supports are eventually found to not be valid biological mod-
els, Skeye may still become useful as a data processing tool
fit to run on these increasingly ubiquitous computers.
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