
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 9 (2014) pp. 167-176
c©MIR Labs, www.mirlabs.net/jias/index.html

Normalisation of Log Messages for Intrusion
Detection

Invited paper. Preliminary version of this paper appears as ”Hierarchical Object Log Format for Normalisation of Security Events” in
Proceedings of the 9th International Conference on Information Assurance and Security (IAS 2013).

Andrey Sapegin, David Jaeger, Amir Azodi, Marian Gawron, Feng Cheng, Christoph Meinel

1Hasso Plattner Institute (HPI), University of Potsdam,
P.O.Box 900460, 14440 Potsdam, Germany

{andrey.sapegin, david.jaeger, amir.azodi, marian.gawron, feng.cheng, christoph.meinel}@hpi.de

Abstract:
The differences in log file formats employed in a variety of ser-
vices and applications remain to be a problem for security an-
alysts and developers of intrusion detection systems. The pro-
posed solution, i.e. the usage of common log formats, has a limit-
ed utilisation within existing systems for security management.
In our paper, we reveal the reasons for this limitation and show
disadvantages of existing common log formats for normalisa-
tion of security events. To deal with it we have created a new
log format that fits for intrusion detection purposes and can be
extended easily. Based on our developing intrusion detection
system, we demonstrate advantages of offered format. Howev-
er, taking previous work into account, we would like to propose
a new format as an extension to existing common log formats,
rather than a standalone specification.
Keywords: log normalisation, intrusion detection, common
log format

I. Introduction

Nowadays, every application has its own log file format.
Such a variety of formats complicates log analysis [1] and
causes problems for system administrators, developers of in-
trusion detection systems (IDS) and security analysts [2, 3].
Therefore, several log format standards [4] were introduced
aiming to solve this problem: CEE [3], CEF [5], IODEF [6].
However, there are many developers who avoid using com-
mon log formats in their projects. This statement particularly
applies to intrusion detection systems. Many software ven-
dors and open source projects still use their own log format
for IDSs [7, 8, 9]. The reasons for this situation hide in the
IDS architecture. To operate rapidly, such systems need to
analyse huge amount of logs from hundreds of devices and
services on the fly [10]. Therefore, the log format should be
lightweight and able to encapsulate all network and host logs
from large datasets.
Log file standards that aim to handle all possible log out-
put of any service, do not fit for these purposes. Moreover,
in some cases, the variety of standardised fields, offered by
such a common log file format, does not provide a suitable
schema for normalisation and correlation of security events.
During the development of our own IDS —Security Analyt-

ics Lab [11]— we have faced the same challenges and came
to the same solution: a log format that is specially designed
for IDSs. However, the object log format we present in this
paper noticeably differs from the existing solutions.
Our goal was to experiment with a flexible lightweight for-
mat to optimise attack detection. First, we analysed a variety
of large log files and came up with a list of common fields
that can be found in the logged events. Then, this list was
reduced to the fields that we considered most important for
the security analysis of occurred events.
As a result, the developed log format facilitates the detection
of attacks and simplifies their correlation. We demonstrate
the ability of our format to simplify attack detection within
a case study. Besides this particular use case, the proposed
log format retains to be adjustable and could be utilised for
generic normalisation concepts.
The remainder of the paper has the following structure: Sec-
tion II describes the data set used, Section III evaluates and
compares existing log formats, Section IV provides detail-
s on the log format we developed and Section V tells about
results of a case study. Next, Section VI provides details on
the architecture of Security Analytics Lab, while Section VII
describes future work. We discuss our results and conclude
in the Section VIII.

II. Data

To prove our concepts, we utilised data from “Scan of the
Month” Honeynet Challenge: “Scan 34 - Analyze real hon-
eynet logs for attacks and activity” [12]. The Honeynet
Project [13] aims to help security specialists to sharpen their
forensics and attack detection skills. To achieve it, the project
shares real attack data collected from honeynets from all over
the world. The “Scan of the Month” challenge provides
archives with log files from different hardware and software
systems for the postmortem analysis. The “Scan 34” chal-
lenge contains log files being collected between 30 January
and 31 March 2005. We chose this particular challenge be-
cause it implies analysis of multiple log files for different ser-
vices and includes various heterogeneous attack traces. We
describe the log files in Table 1.

MIR Labs, USA

Normalisation of Log Messages for Intrusion Detection 168

Server Service Date Total number of lines
n/a HTTP Server Jan 30 - Mar 16 3925

bridge iptables firewall Feb 25 - Mar 31 179752
bastion snort IDS Feb 25 - Mar 31 69039
combo syslog Jan 30 - Mar 17 7620

Table 1: Log files available to solve the challenge

The “Scan 34” challenge also provides the description on the
attacks and important events in the log files. See the details
of the 15 most important events in Table 2.
In total, four attacks led to the server’s compromisation. T-
wo of four attackers used the vulnerability of ‘awstats.pl’ in-
stalled after the server reboot, probably by a system admin-
istrator. Another two attackers successfully brute-forced the
SSH password. The first attacker has also installed an IRC
bot right after the intrusion. Other events listed in the table
were not harmful for the server; they represent suspicious
activity that did not result into a successful intrusion.

III. Existing log formats for normalisation of
security events

Before we decided to use our own log format, we have evalu-
ated existing solutions, trying to estimate if they could fit for
our purposes of normalisation of security events. Please see
the overview of proposed log formats in Table 3.
The selected formats have different structure, size and even
usage purpose. CEE is a generic format for logging any types
of events [3], IDMEF was developed for exchange of security
messages [14]. IODEF is specially designed for computer
security incidents [6], as well as CEF developed as a part
of intrusion detection system [5]. Although the described
formats have different purposes, each of them could be used
for log normalisation.
However, not every part of the log message could be nor-
malised to the standard fields defined in every format. To
deal with it, each format allows to use extra fields or ex-
tend its structure. Therefore we decided to check how many
changes we need to fully normalise log messages we have
into each of 4 formats. The Table 4 shows, that some parts of
log messages have no corresponding field in the log format.
This small observation reveals a deeper problem, if inves-
tigated. The reviewed log formats offer limited number of
options to parse the textual event description precisely. For
example, using the IDMEF, messages like “authentication
failure” and “Relaying denied. IP name lookup failed” are
supposed to be written into the Classification class as whole.
Such single field available in the log format does not allow to
effectively normalise descriptions like “BLEEDING-EDGE
WORM Mydoom.ah/i Infection IRC Activity [Classification:
A Network Trojan was detected]”. CEE format demonstrates
a similar issue, as all descriptions and other details are sup-
posed to be stored in the “message” field. Since the infor-
mation still could be stored in such generic fields, we do not
mention it in the table as parts without corresponding field.
Another common issue affecting all log formats implies com-
plications while normalising the event details like user name,
rule/action applied, method (e.g., GET) and response (404
or 550). In other words, the existing formats offer a limited

number of fields to specify, what has happened. CEF deals
with it better than other formats, due to the presence of keys
like ‘act’ (Action mentioned in the event), ‘app’ (Application
protocol), ‘request’, ‘requestMethod’ and others.
Finally, all formats have too few – or do not have any – fields
for expression of properties specific for intrusion detection,
like relation between events, security metrics or classifiers
such as CVE [15] and CWE [16] identifiers, object and sub-
ject of the event. These properties usually could not be ex-
tracted from the log lines itself, but are expected to be filled
by IDS.
Thus, not only missing fields from the table should be added
to each of formats, but also the fields to improve parsing of
message parts and allow to store intrusion detection proper-
ties. That’s why we decided to select and re-engineer one
of the formats. However, the structure, number of fields/at-
tributes and possible values or contents are different for all
formats, which make them hard to compare with each oth-
er. Therefore, we chose the following additional criteria to
examine log formats:

• scalability. There should be an ability to add custom
fields, if some log formats could not be normalised into
standard ones.

• light weight. The log format should have reasonable
number of fields/attributes to avoid redundancy and fit
for high-speed normalisation purposes.

• multilevel schema. Intrusion detection implies correla-
tion of the normalised logs. The hierarchical or other
connected structure is preferable as it will allow to cat-
egorise different fields into classes.

Applying the first criterion, all selected formats are scalable
to some extent. IDMEF [14] and IODEF contain an Addi-
tional Data class, CEF supports Custom Dictionary Exten-
sions and CEE allows to create custom events and fields.
Analysing the second criterion, i.e. the number of fields/at-
tributes, the CEE format is much more compact than IODEF,
IDMEF and CEF. We also would like to mention, that ID-
MEF is designed for data exchange for intrusion detection
and security management systems only. So we could expect
a lot of additional attributes being added to IDMEF to adopt
it for normalisation purposes.
Finally the last criterion is examined. The CEF has a
flat structure; IODEF and IDMEF have similar multi-level
schemas with connections between different classes; and
CEE has a clear object-based hierarchical structure.
Based on the criteria defined, we selected CEE to be extend-
ed as the log format that fits better for our purposes.

169 Sapegin et al.

N Event Date Details
1 Reboot Feb 11, 2005 n/a
2 Software installation Feb 25, 2005 AWSTATS installed
3 Server compromised Feb 26, 2005 Code injection through awstats.pl
4 Server compromised Mar 04, 2005 Code injection through awstats.pl
5 Server compromised Mar 06, 2005 ssh brute-force successful
6 Server compromised Mar 13, 2005 ssh brute-force successful
7 Software installation Feb 26, 2005 IRC bot installed by an attacker
8 ICMP alert n/a ICMP Destination Unreachable
9 Slammer worm n/a Worm propagation attempt

10 IIS attacks n/a WebDAV search access, cmd.exe access, etc.
11 SMTP scan n/a POLICY SMTP relaying denied
12 Typot trojan n/a trojan traffic
13 RPC scan n/a RPC portmap status request
14 Port scan n/a NMAP -sA (ACK scan)
15 Slapper worm n/a Worm propagation attempt

Table 2: Security related events that occurred during the monitoring for the challenge

Format name Organisation Size estimation Format structure

CEE (Common Event Expression) MITRE 58 fields, 7 objects
two levels, hierarchical,

object-based
IDMEF (Intrusion Detection Message

Exchange Format)
IETF

118 elements, 5 core classes,
53 attributes

multi-level, class-based

IODEF (Incident Object Description
Exchange Format)

IETF
53 elements, 19 top-level

classes, 83 attributes
multi-level, class-based

CEF (ArcSight Common Event
Format)

HP 104 keys one level, key-value pairs

Table 3: Existing standards for log formats

Log line CEE IDMEF IODEF CEF

81.181.146.13 - - [15/Mar/2005:05:06:53 -0500] “GET
//cgi-bin/awstats/awstats.pl? configdir= —%20id%20—

HTTP/1.1” 404 1050 “-” ”Mozilla/4.0 (compatible; MSIE 6.0;
Windows 98)

HTTP/1.0,
GET, 404

Mozilla/4.0,
404

81.181.146.13,
GET, //cgi-
bin/awstats/
awstats.pl,

404,
Mozilla/4.0

-

Mar 15 13:38:03 combo sshd(pam unix)[14490]:
authentication failure; logname= uid=0 euid=0 tty=NODEVssh

ruser= rhost=202.68.93.5.dts.net.nz user=root
- -

14490,
202.68.93.5
.dts.net.nz,
user=root

14490

Mar 1 20:45:12 bastion snort: [1:2001439:3]
BLEEDING-EDGE WORM Mydoom.ah/i Infection IRC
Activity [Classification: A Network Trojan was detected]

[Priority: 1]: TCP 11.11.79.67:2568 -> 129.27.9.248:6667

TCP -
Priority: 1,

11.11.79.67,
129.27.9.248

Priority: 1

Mar 24 19:46:50 bridge kernel: INBOUND ICMP: IN=br0
PHYSIN=eth0 OUT=br0 PHYSOUT=eth1 SRC=63.197.49.61

DST=11.11.79.100 LEN=32 TOS=0x00 PREC=0x00
TTL=111 ID=1053 PROTO=ICMP TYPE=8 CODE=0

ID=512 SEQ=29421

ICMP, eth0,
eth1, br0

-

SRC =
63.197.49.61,

DST =
11.11.79.100,
eth0, eth1, br0

br0

Feb 1 10:08:32 combo sendmail[32433]: j11F8FP0032433:
ruleset=check rcpt, arg1 = <china9988@21cn.com>,

relay=[61.73.94.162], reject=550 5.7.1
<china9988@21cn.com>... Relaying denied. IP name lookup

failed [61.73.94.162]

ruleset =
check rcpt,

550,
china9988@

21cn.com

ruleset =
check rcpt,

550,
china9988@

21cn.com

check rcpt,
relay=

[61.73.94.162],
550,

61.73.94.162

32433, ruleset
= check rcpt

Table 4: Parts of log messages without corresponding field in the log format.

IV. Object Log Format

As mentioned in the previous Section, the decision to devel-
op our own log format for IDS came with the attempt to u-
tilise the CEE format in our experimental intrusion detection

system [11].
We started with modifying the CEE format and adding cus-
tom fields to cover all possible log message variants from the
Honeynet challenge. However, this draft log format still had
several problems. First, we have used less than half of fields

Normalisation of Log Messages for Intrusion Detection 170

(24 of 58) defined in the standard. Compared to the num-
ber of custom fields added – 59 – and the fact that standard
CEE fields do not always present the key properties of the
log message, it becomes hard to argue for using the resulting
format inside the IDS system. Second, the object-field hier-
archy defined in the Field Dictionary [17] contains only one
abstraction level. Taking into account overlapping semantics
(e.g. appname and app.name fields) in the CEE notation, this
relatively flat structure contains many similar fields and adds
a lot of confusion for a developer. To handle with our goals,
we made changes to the CEE structure as well. We extended
the hierarchical structure of CEE to three levels to achieve
flexibility and improve clarity.
We present the proposed format in Figure 1. The first level
(marked with bold) describes global parameters or classes of
parameters, such as network or original event. On the second
level of our hierarchy (written in normal font) we describe the
most significant properties. And on the third level (marked
with italics) we place specific information such as network
protocol fields.
Compared to the formats examined in the Section III, the
proposed format offers multiple fields to store event details
describing what has happened (tag and application classes),
as well as fields, which are highly relevant for intrusion de-
tection (mainly, classes related ids, relation and security).
Let’s consider the example from the Table 4 to show how to
parse real log data into the proposed format:

81.181.146.13 - - [15/Mar/2005:05:06:53 -0500] ‘‘GET
//cgi-bin/awstats/awstats.pl? configdir= |\%20id
\%20| HTTP/1.1’’ 404 1050 ‘‘-’’ "Mozilla/4.0 (
compatible; MSIE 6.0; Windows 98)

The log line listed above is taken from the ‘access log’ file
on the HTTP server. Using it, we now describe the most sig-
nificant elements and how the information from our example
log entry should be distributed over them.

• network This class covers all properties around the low-
er network layers, i.e. the link, network and transport
layer of the TCP/IP protocol stack. It describes infor-
mation about the source and destination endpoints of
network events, including their MAC address, IP ad-
dress and ports. The protocol fields in captured network
packets are organised in subclasses, such as ether, ip,
icmp, tcp and udp. These details can then be used to
analyse the exact workings of a network communica-
tion. It should be noted, that since we are parsing secu-
rity events and not only the network packets, this class
could provide details for multiple network packets as-
sociated with an event, even if they were reported in
different logs.

From the log line sample, we extract only the IP
address—81.181.146.13—to fill the ‘network.src ipv4’
field.

• application This class covers all properties of applica-
tions and services involved in the event. The applica-
tion class can represent different kind of involved appli-
cations in an event. In a network connection, such an
application could be the client application, which initi-
ates a connection or sends a packet to the server, or the

service application, which is the target of a sent pack-
et or initiated connection. To cover the various special
characteristics in service communications, the applica-
tion class also allows to further specify parameters in the
context of HTTP, FTP and more. In a host-based event,
this application is usually the application that initiates
an action, e.g. an application that writes a file. The
semantics of the specified application can be obtained
from the subject and object field of the tag class.

Analysing the example log line, it is possible to no-
tice, that the application is a user agent, so the ‘applica-
tion.http.user agent’ field should be filled with “Mozil-
la/4.0 (compatible; MSIE 6.0; Windows 98)” line and
‘application.http.query string’ field – with the follow-
ing line:

“GET //cgi-bin/awstats/awstats.pl? configdir=
—%20id%20— HTTP/1.1”.

• producer This class gives information on the applica-
tion that observed and eventually persisted an event. It
should describe the first application that persisted the
events and should not be changed to one of the interme-
diate processing applications.

In our example, a producer is a HTTP server, namely
“Apache HTTP Server”, which should be written into
the ‘producer.appname’. If we would know some details
about the host from the other log lines, we could also fill
the ‘producer.host’ field, e.g. with http server.

• file This class describes the files that were involved in an
event. A file can appear in different contexts, i.e. main-
ly as a data source and target of access operations, such
as read and write. In the case of an FTP or HTTP con-
nection, this parameter could give information on the
accessed resource. Similar to the application class, the
concrete context for one event is defined by the subject
and object field of the tag class.

Considering the sample log line, the ‘file.name’
field will contain ‘awstats.pl’ and ‘file.path’ – ‘//cgi-
bin/awstats/awstats.pl’.

• original event This field keeps the original log as found
in the log source. This is usually a string containing full
log line or fields from log database.

The whole sample log line should be filled into the ‘o-
riginal event’ in our case.

• relation This class serves the cases when several events
are related to each other. In the case of multiple events
sharing a common identifier for correlation, this identi-
fier is stored in the common id field. The prev dep prop-
erty indicates if the current event depends on a previous
one.

For the example considered, these fields will be empty,
because the logged event is standalone and not related
to any other events.

• tag This class provides abstract information on top of
the message details, mainly to categorise and tag events.
As this information is not always directly represented in

171 Sapegin et al.

Figure. 1: Tree of properties in our log format

the log data, this is required to be set by the user. In
some cases the action (and other fields as well) cannot
be explicitly identified with a single term. Therefore,
we propose all fields within this class as multi-value.

E.g. the ‘tag.action’ could be {get,access}, ‘tag.subject’
– host or user client, ‘tag.object’ – file or we-
b document, ‘tag.prod type’ – web server and
‘tag.service’ could be web.

• security This class provides links to identifier of vul-
nerability, related to the logged event. For example, ‘se-

curity.cve’ could be “CVE-2010-4369”.

• event id This field contains a unique internal id of
the event. This should be unique among all generated
events in a management system. For our example, we
used an SQL database for automatic id generation.

The developed format structure is easy to present, extend
and map into database relations. These features simplify
the developer’s tasks and clarify the semantics of fields with
similar names. For example, now the former appname and
app.name fields are easier to distinguish by using produc-

Normalisation of Log Messages for Intrusion Detection 172

er.appname and application.name as names. Finally, with
107 fields used, we were able to effectively normalise every
log message from the dataset. After the normalisation step,
most of the attacks could be discovered using simple search
queries, as shown in the next section.

V. The role of the common log format in attack
detection

As mentioned earlier, we normalise files before searching for
attacks. This pre-processing step includes parsing of logs in-
to described log format with regular expressions1 and insert-
ing them into SQL database.
The proposed log format allows to detect attacks described in
the Table 2 using simple queries, without the usage of a cor-
relation engine or other advanced intrusion detection tech-
niques. The challenge winners on the other part have used
self-written scripts and manual analysis [19, 20]. We now
provide several use cases to demonstrate the benefits of the
proposed log format. E.g. to check for SMTP scans, we use
the following query:

select * from event where application_protocol = ’
smtp’ and tag_status = ’failure’

All 220 log lines returned correspond to event 11 from Ta-
ble 2. These lines include both sendmail messages from the
mail server (“combo”) and snort alerts from the logging serv-
er (“bastion”).
Next, to detect the code injection attempts, we suggest an-
other simple SQL query:

SELECT * FROM event WHERE application_cmd LIKE ’%
%\%3b%’ ESCAPE ’\’ AND application_protocol = ’
http’ ORDER BY time

We search for a semicolon in the URL being processed by
any HTTP Server mentioned in the log files2. Resulting 20
log lines relate to the code injection cases through awstats.pl.
15 lines correspond to events 3 and 7 from Table 2, two other
lines – to event 4. The remaining 3 lines relate to the aw-
stats.pl code injection attempts on 2 and 12 March 2005, not
being mentioned in the official challenge results3.
Obviously, many attacks could not be captured with such
simple queries. But the log format structure allows a devel-
oper to easily create more sophisticated checks. Please see
Table 5 for sample patterns of malicious HTTP events. The
proposed object hierarchy of the log format allows to create
object-specific patterns (in this example – patterns for ele-
ments of HTTP header). This flexibility simplifies creation
of rules for matching of malicious events. Now, if we check
the normalised log messages with all the patterns selected,
we could match 740 HTTP events related to line 10 from
Table 2, as well as 35 redirects and 2 cases of calls to the
‘libwww’ library.

1to speedup selection of relevant regular expression for each log line,
we store all available regular expressions together with example of corre-
sponding log line in the Lucene[18] index. When new log line comes for
normalisation, we search the index for the most relevant regular expression
and apply it.

2In almost all cases, the semicolon in the URL indicates a malicious
event like code injection.

3these events were found by the challenge winner [19].

VI. System architecture

The proposed Object Log Format, as well as attack detection
techniques, is already integrated into our own Intrusion De-
tection System. Security Analytics Lab, as any other IDS,
aims to support various log sources by using different im-
port modules. The overview of the logging infrastructure is
presented in Figure 2.

Figure. 2: Log gathering architecture of SAL system

At the current system state, we offer modules for direct im-
port from Splunk, GrayLog2 and logstash systems. Besides
that, we provide our own log gatherer, that requires an instal-
lation of the client on each monitored machine (Linux, Apple
MacOS and Microsoft Windows are supported). Compared
to direct import modules, SAL Gatherer allows to collect
some meta-information in addition to log lines. For exam-
ple, if the timestamp in the log line does not contain a year,
this information could be received from the Gatherer.
Using all these modules, we support gathering logs from a
variety of systems and formats, such as Cisco ASA/IOS, SAP
NetWeaver, SAP Moonsoon, Windows Events, syslog, etc.
Gathered logs are normalised into the proposed Object Log
Format and stored in the SQL Database for further analysis.

A. Gathering real-world data

Although this paper covers only data from “Scan of the
Month” Honeynet Challenge, we had an interest to analyse
real data as well to prove our concepts in real world. Howev-
er, installation of a self-developed monitoring system (or at
least log gatherers) on the productive system could be com-
plicated due to legal issues. The reasons for this are increased
requirements for privacy, fault tolerance and security which
could be described as follows:

• security. Since all logs are initially collected by do-
main controllers, the gatherer should be installed there.

173 Sapegin et al.

HTTP request
header element

Log Format Object Patterns

Host
Network.fqdn &

File.path

“eval(”, “concat”, “union!+!select”, “(null)”, “base64 ”, “/localhost”, “/pingserver”,
“/config.”, “/wwwroot”, “/makefile”, “crossdomain.”, “proc/self/environ”, “etc/passwd”,

“.exe”, “.sql”, “.ini”, “/.bash”, “/.svn”, “/.tar”, “ ”, “¡”, “¿”, “/=”, “...”, “+++”, “/&&”

Content-
Location

Application. http.
query string

“?”, “:”, “[”, “]”, “../”, “127.0.0.1”, “loopback”, “%0a”, “%0d”, “%22”, “%27”, “%3b”,
“%3c”, “%3e”, “%00”, “%2e%2e”, “%25”, “union”, “input file”, “execute”, “mosconfig”,

“environ”, “scanner”, “path=.”, “mod=.”

User-Agent
Application. http.

user agent
”binlar”, ”casper”, ”cmswor”, ”diavol”, ”dotbot”, ”finder”, ”flicky”, ”jakarta”, ”libwww”,

”nutch”, ”planet”, ”purebot”, ”pycurl”, ”skygrid”, ”sucker”, ”turnit”, ”vikspi”, ”zmeu”

Table 5: HTTP patterns.

However, the domain controller is always the most im-
portant part of an IT infrastructure, and therefore has
increased security requirements. Hence the installation
of the third-party software, like the gatherer, could be a
complicated issue.

• fault tolerance. Nowadays we have to deal with a large
of security logs on the domain controller in a big net-
work. Therefore, collecting and exporting high amounts
of security logs could take the resources of the Domain
Controller and affect the processing of other tasks.

• privacy. Finally, the data such as Domain Controller
logs often contain personal information, e.g. user ID,
time of logon and logoff events. This information is of-
ten an object of data privacy and should be anonymised
before exporting for analysis.

To deal with such issues, we create standalone scripts for log
export. For example, to extract Windows security events, we
provide a script, that anonymises the data related to user pri-
vacy and takes care about hardware resources of the Domain
Controller. Moreover, the script is a light-weight PowerShell
executable, which could be easily checked for security issues
and approved by system administration staff.

B. Visualisation

Security Analytics Lab also provides a web interface for vi-
sualisation of logs, as presented in Figure 3. Left pane shows
list of hosts in the network; middle pane presents overview of
raw log messages, while right pane highlights individual nor-
malised fields of Object Log Format for each message. The
search string on the top supports SQL-style queries. Finally,
the logging timeline on the bottom provides overview of all
available logs and simplifies navigation through them.
Even though the log messages are stored in the Object Log
Format, we also keep original log lines for the web interface,
since they could be easier to recognise. All queries, however,
are executed on normalised data only.

VII. Future work

Normalisation of events into one common format opens
wider capabilities for data analysis, since the data is unified.
In our future work, we plan to improve our system and apply
various correlation algorithms to such unified data collected
from different systems, as described in following subsection-
s.

A. Testbeds for dataset generation

To collect the data for correlation analysis, we use the fol-
lowing testbeds:

• Active Directory testbed, that we created as a virtual
network with a Microsoft Windows Domain, where we
collect logs of manually generated attacks.

• Capture The Flag challenges, that are organised at our
institute as a part of teaching process. Within these chal-
lenges students create a virtual network with Microsoft
Windows, Linux and Cisco IOS virtual machines, as
well as network monitoring system. During the attack
phase, we collect data from the monitoring system and
import them into our database for further analysis.

• Honeypot network with SAP software, that we devel-
op as a standalone project. The goal of this project is to
gather information about previously unknown vulnera-
bilities of SAP software. We open Internet access to
systems installed within honeypot network and record
all attacks performed on them. The recorded data is al-
so normalised and saved in our database.

B. In-memory correlation and visualisation

The correlation analysis of collected data, even if stored in
the normalised form, could be challenging due to high vol-
umes of events to be analysed [21]. To deal with this is-
sue and enable high-speed analytics, we use in-memory SAP
HANA database as data storage. The SAP HANA provides
an integrated library for machine learning analysis, namely
Predictive Analysis Library [22]. In contrast with tradition-
al approach, when the data should be first retrieved from the
database, we are able to analyse data directly in the memory
of database engine.
The high-speed correlation of events allows us to identify
and visualise an attack path within an attacked network. The
example of such attack path visualisation (which is currently
under development) is presented in Figure 44.
Figure 4 shows another interface of Security Analytics Lab,
which is provided as Java application. Besides visualisation
of attack path and other capabilities5, in Java interface we
support signature-based intrusion detection and offer a dash-
board view.

4number of log messages and timeline differ from Figure 3, since we
used different dataset for this example

5similar to the implemented in the web interface described in Figure 3

Normalisation of Log Messages for Intrusion Detection 174

Figure. 3: Visualisation of logs in the proposed format within web interface

Figure. 4: Sample visualisation of attack path

C. Vulnerability database for security analysis

In addition to visualisation of attack path, we plan other fea-
tures for further development of the Security Analytics Lab,
such as connection to vulnerability database and invento-
ry system. The use of inventory system, such as OCS In-
ventory NG [23] or GLPI [24] together with vulnerability
database, namely HPI-VDB [25], allows us to provide in-
formation about vulnerable hosts in the network directly in
the dashboard of Security Analytics Lab. Moreover, result-
s of vulnerability analysis could be used to construct attack
graph and attract the attention of security operator to possible
attack vectors.

VIII. Discussion

In this paper we have shown how the common log format,
if thoroughly developed with the regard for specific usage
conditions (intrusion detection in our case), could facilitate
a lot of operations, including search for attack patterns and
correlation of events from different servers. However, the
structure of existing log format standards could differ from
the one imposed by specific use conditions. On the one hand,
common log formats being developed nowadays (CEE [3]
and IODEF [6]) try to handle all possible use cases. Such
unified approach often needs a manual adoption to be a best
fit for a specific use case. On the other hand, log formats,

175 Sapegin et al.

specially established for intrusion detection sometimes have
a limited scope. IDMEF [14] defines the format for inter-
communication only (between intrusion detection, response
and management systems). Furthermore, CEF [5] has a flat
hierarchy, which makes it less flexible in comparison with
object-based log formats like CEE [3].
Within our proposed format we try to utilise the strong sides
of both approaches and design the flexible object log format
that fits the specific purposes, but could be easily extended
for generic use cases. However, we do not intend to cre-
ate a replacement for standards proposed by MITRE [26],
IETF [27] and others. Rather, we hope that existed standards
could be more flexible to be used for specific purposes and be
able to combine extensible structure, light weight and multi-
farious capabilities, such as search and correlation facilities
for intrusion detection systems.

References

[1] D. Casey. Turning log files into a security asset. Net-
work Security, 2008(2):4–7, 2008.

[2] Liu Yang, Pratyusa Manadhata, William Horne, Prasad
Rao, and Vinod Ganapathy. Fast submatch extraction
using OBDDs. In Proceedings of the eighth ACM/IEEE
symposium on Architectures for networking and com-
munications systems, ANCS ’12, pages 163–174, New
York, NY, USA, 2012. ACM.

[3] Common Event Expression White Paper. https/
/cee.mitre.org/docs/Common_Event_
Expression_White_Paper_June_2008.pdf,
June 2008.

[4] Gerard T. McGuire. The state of security automa-
tion standards - 2011. http://www.mitre.org/
work/tech_papers/2011/11_3822/, Novem-
ber 2011.

[5] ArcSight. Common Event Format. http:
//mita-tac.wikispaces.com/file/view/
CEF+White+Paper+071709.pdf, July 2009.

[6] R. Danyliw, J. Meijer, and Y. Demchenko. The incident
object description exchange format. IETF RFC5070,
December 2007.

[7] BlackStratus LOG Storm. http://www.
blackstratus.com/enterprise/
supported-technologies/log-storm/.

[8] Sawmill log analysis tool. http://www.sawmill.
net/.

[9] Open Source Host-based Intrusion Detection System.
http://www.ossec.net/.

[10] Samuel Marchal, Xiuyan Jiang, Radu State, and
Thomas Engel. A Big Data Architecture for Large S-
cale Security Monitoring. In Proceedings of the 3rd
IEEE Congress on Big Data, pages 56–63. IEEE, July
2014.

[11] Sebastian Roschke, Feng Cheng, and Christoph Meinel.
An extensible and virtualization-compatible ids man-
agement architecture. In Proceedings of the 2009
Fifth International Conference on Information Assur-
ance and Security - Volume 02, IAS ’09, pages 130–
134, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[12] Anton Chuvakin. Scan 34 - analyze real honeynet logs
for attacks and activity. http://old.honeynet.
org/scans/scan34/, February 2005.

[13] The Honeynet Project. http://honeynet.org/.

[14] H. Debar, D. Curry, and B. Feinstein. The Intrusion
Detection Message Exchange Format (IDMEF). IETF
RFC4765, March 2007.

[15] Common Vulnerabilities and Exposures. http://
cve.mitre.org/.

[16] Common Weakness Enumeration. http://cwe.
mitre.org/.

[17] CEE Field Dictionary. http://cee.mitre.org/
language/1.0-alpha/dictionary.html.

[18] Apache Lucene. http://lucene.apache.org/.

[19] M. Richard, M. Ligh, A. Magnusson, S. Seale, and
K. Standridge. Project honeynet scan of the month
34. http://old.honeynet.org/scans/
scan34/sols/1/index.html, May 2005.

[20] C. Kronberg and A. Freeworld. Analysis of the logfiles
given in SotM34. http://old.honeynet.org/
scans/scan34/sols/2/proc.pdf, 2005.

[21] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih
Lin, and Kuang-Yuan Tung. Intrusion detection sys-
tem: A comprehensive review. J. Network and Com-
puter Applications, 36(1):16–24, 2013.

[22] Predictive Analysis Library. http://help.
sap.com/hana/SAP_HANA_Predictive_
Analysis_Library_PAL_en.pdf.

[23] Open Computers and Software Inventory Next Gen-
eration. http://www.ocsinventory-ng.org/
en/.

[24] The GLPI Project. http://www.glpi-project.
org/.

[25] HPI Vulnerability Database. https://hpi-vdb.
de/vulndb.

[26] The MITRE Corporation. http://www.mitre.
org/.

[27] Internet Engineering Task Force. http://www.
ietf.org/.

Normalisation of Log Messages for Intrusion Detection 176

Author Biographies

Andrey Sapegin is PhD student and Research Assistant at
the Hasso Plattner Institute (HPI), University of Potsdam,
Germany. He received his Diploma with Honours at the
Kaliningrad State Technical University, Russian Federation
in 2008. Andrey Sapegin has gathered practical experience
while working as a software developer at the Unister Gmb-
H and as a system administrator at the saxess.ag. His re-
search interests include intrusion detection, network security
and routing protocols.

David Jaeger is currently a PhD Student in the IT-Security
Engineering Team at Hasso Plattner Institute (HPI) at U-
niversity of Potsdam, Germany. He studied IT-Systems-
Engineering from 2006 to 2012 at the Hasso-Plattner-
Institute and got his B.Sc. degree in 2009 and his M.Sc de-
gree in 2012. His research interests are mainly in the field of
intrusion detection, especially in the topics attack monitor-
ing and analytics as well as normalization of security-related
information.

Amir Azodi has a B.Sc. degree in Communication Networks
from Oxford Brookes University and a M.Sc. degree in In-
formation Security from University College London. He is
currently a PhD student at the Department of Internet Tech-
nologies of the Hasso Plattner Institute. His research interest-
s include Event Normalization, Intrusion Detection, Attack
Path Detection and Visualization.

Marian Gawron is PhD student and research assistant at the
Hasso Plattner Institute (HPI), University of Potsdam, Ger-
many. He received his M.Sc. degree from HPI, University of
Potsdam in 2013. During his Master project, he successfully
developed and managed the online version of HPI vulnera-
bility database, https://www.hpi-vdb.de. His research inter-
ests include intrusion detection, vulnerability databases, and
network security.

Feng Cheng is now senior researcher at Hasso Plattner In-
stitute (HPI) at University of Potsdam (Uni Potsdam), Ger-
many. His research is mainly focused on network securi-
ty, firewall, IDS/IPS, security analytics, attack modeling and
penetration testing, SOA and Cloud Security, etc. He has
published more than 30 papers in the international confer-
ences and Journals. He served as coordinator, program com-
mittee member, or reviewer for many international work-
shops and conferences. Now, he heads the ITSecurity En-
gineering team and is conducting research, development and
teaching activities around new technologies of Network Se-
curity at HPI. He holds M.Eng. from Beijing University of
Technology (BJUT), and PhD from University of Potsdam
(Uni Potsdam).

Christoph Meinel is a CEO and a Scientific Director of the
Hasso Plattner Institute for IT-Systems Engineering (HPI)
and Professor for Internet-Technologies and Systems at the
University of Potsdam.
Christoph Meinel is full professor for computer science at H-
PI and the University of Potsdam, holding a chair in ”Internet
Technologies and Systems”. His research focuses on Future

Internet Technologies, in particular Internet and Information
Security, Web 3.0, Semantic-, Social- and Service-Web, as
well as on innovative Internet applications, especially in the
domains of e-Learning and Telemedicine. Besides this, he is
scientifically active in the field of Innovation Research and
Design Thinking.

