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Abstract: Existing penetration testing approaches assess the
vulnerability of a system by determining whether certain attack
paths are possible in practice. Thus, penetration testing has so
far been used as a qualitative research method. To enable quan-
titative approaches to security risk management, including de-
cision support based on the cost-effectiveness of countermea-
sures, one needs quantitative measures of the feasibility of an
attack. Also, when physical or social attack steps are involved,
the binary view on whether a vulnerability is present or not is
insufficient, and one needs some viability metric. When pene-
tration tests are performed anyway, it is very easy for the testers
to keep track of, for example, the time they spend on each attack
step. Therefore, this paper proposes the concept of quantitative
penetration testing to determine the difficulty rather than the
possibility of attacks based on such measurements. We do this
by step-wise updates of expected time and probability of suc-
cess for all steps in an attack scenario. In addition, we show
how the skill of the testers can be included to improve the ac-
curacy of the metrics, based on the framework of item response
theory (Elo ratings). We prove the feasibility of the approach
by means of simulations, and discuss application possibilities.

Keywords: item response theory, penetration testing, quantita-
tive security, security metrics, socio-technical security.

I. Introduction

Penetration testing is a method in which testers systemati-
cally try to reach a certain target asset in an organisation by
discovering and exploiting vulnerabilities, in order to deter-
mine whether real attacks would be possible. Such vulnera-
bilities may exist in the IT architecture, but also in physical
access controls or lack of awareness of employees, enabling
social engineering attacks. The results of a penetration test
enable an organisation to address identified attack opportu-
nities by the implementation of countermeasures. This ap-
proach is particularly effective when automated tools can be
employed to find standard vulnerabilities in remotely acces-
sible machines.

However, the “patch everything” approach to information
or cyber security has been controversial for a long time, es-
pecially when multi-step, targeted attacks are concerned. In
such attacks, remote access may be combined with physical

and even social attack steps, and a determined attacker of-
ten has a reasonable chance of getting in. A recent example
is the Stuxnet attack, a sophisticated cyber attack which tar-
geted industrial installations in 2010 and aroused great inter-
est in media and among security experts [16]. This attack was
carried out over a period of several months by using highly-
complex malware in combination with physical infiltration,
but it also relied on human error and eventually slowed down
and damaged the production of centrifugal machines of Ira-
nian nuclear enrichment facilities. The protection against this
kind of complex attacks requires minimising existing secu-
rity vulnerabilities.

However, economic concerns demand that countermea-
sures are cost-effective, and with a limited budget, risks need
to be prioritised [4]. The mere existence of an attack possi-
bility is not sufficient to provide decision support for counter-
measure investment. To support decisions, quantitative met-
rics for security and security risks are needed [18]. Such met-
rics are not always easy to obtain, as data on attacks is often
not available. Penetration testing, however, may constitute
the ideal setting to provide the necessary data.

Existing penetration testing approaches assess the vulner-
ability of a system by determining whether certain attack
paths are possible in practice. Therefore, penetration test-
ing has thus far been used as a qualitative research method.
But when complex, multi-domain penetration tests involving
human testers are performed anyway, it is very easy for the
testers to keep track of, for example, the time they spend on
each attack step. Such measurements could be used as a basis
for quantitative judgements on security. Therefore, this paper
proposes the concept of quantitative penetration testing, and
a method to determine the difficulty rather than the possibil-
ity of attacks from penetration testing results. Our method is
based on the social science framework of item response the-
ory, in particular Elo ratings. We apply it to both attack steps
and the testers executing those.

More concretely, we derive estimates for both the expected
time and the probability of success of attack steps from pene-
tration testing results. This can be done either statically, i.e.,
by calculating estimates from a data set, or iteratively, i.e.,
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by updating the expected values after each attack observa-
tion. In the latter case, it is also possible to take tester skill
into account, by updating both the difficulty of attack steps as
well as attacker skill ratings. The skill ratings of the testers
can then be used to calculate more accurate difficulty levels
for the steps. We provide simulations for expected time and
probability of success estimates, and show that they converge
reasonably well, making the approach feasible in practical
applications.

This work extends [2] and provides an extensive formal-
isation of the algorithmic computations involved. We show
how to estimate probability of success and expected time of
attack steps in case underlying observation data is incom-
plete, which is a common problem in the analysis of attacks.
Our estimates are obtained through a step-by-step update
routine, and we demonstrate how to derive statistically sig-
nificant results with this technique. Finally, we describe the
algorithmic framework for updating the estimates for both
the attacks steps and the attacker.

Organization of the paper. In section II, we discuss the
state-of-the-art and related approaches. In section III, we de-
fine the requirements for quantitative penetration testing. We
formalise our basic method for quantitative penetration test-
ing in section IV, and use item response theory to include
attacker skill in section V, including the corresponding al-
gorithms. The results of simulations are shown in section
VI. We end with application opportunities in section VII and
conclusions in section VIII.

II. Related work

A. Penetration Testing

Penetration testing started as a hackers’ art, involving long
sessions to attempt to break into an organisation via the In-
ternet. Many attempts have been made to move towards more
scientific methods (see e.g. [20]), and several automated tools
for online penetration testing are now available.

Next to online methods, penetration testing may also in-
clude physical access to the facilities of an organisation [1].
In addition, social engineering can be included to determine
the human weaknesses that may provide access to assets
[5, 6, 9, 10, 15]. Overviews of penetration testing methods
are provided in [3, 8, 11].

Penetration testing may focus either on single vulnerabili-
ties, or may involve multi-step attacks that would lead to the
assets [21]. With multi-step attacks, attack trees [19, 27] or
attack nets [20] can be used as a basis for these tests.

B. Security metrics

For a long time, it has been acknowledged that operational
measures of computer, information and cyber security are
important [18]. Such measures, or metrics, provide insight
in the vulnerability of an organisation against attacks. This
enables tests of the systems against imposed security poli-
cies [22], in particular when such policies are formulated
quantitatively [24]. Metrics are also needed to integrate se-
curity into traditional (non-malicious) quantitative risk man-
agement approaches [23]. However, these metrics have typi-

cally not been associated with penetration testing.

C. Item Response Theory

Item response theory is a classical method to calibrate tests,
such as intelligence tests, when the skill levels of the per-
sons taking part in the calibration is unknown. From a set
of correct and incorrect responses of a set of persons to a set
of items, both the skill of the persons and the difficulty of
the items are estimated. The simplest case are 1-parameter
or Rasch models [26]. In the Math Garden project this idea
was combined with dynamic updates of the ratings.[13] This
system is similar to the Elo rating used to rank chess players
[7].

In [25], it was proposed to apply the framework of item
response theory to security metrics. The key idea is that the
likelihood of success can be estimated from attack strength
and defence strength (difficulty). In this paper, rather than
considering single-event attacks, we focus on multi-step at-
tacks, in which digital, physical, and social attack vectors can
be combined. Also, the proposal in [25] did not include time
as a separate variable, and this is an important contribution of
the present paper. We separate probability of success (related
to attacker skill and step difficulty) and time or effort spent
(related to attacker speed and the labour intensity of the step)
into different variables. Different possibilities for including
response time (RT) in item response theory models are dis-
cussed in [29].

III. Requirements

A. Parameters

To enable quantitative penetration testing, at first one has to
choose the quantitative variables to be taken into account.
We consider the time that an attacker requires to perform
an attack, and the probability that the attack is successful.
Depending on the problem context, time can be replaced by
other parameters, such as resources to answer the question
‘How much money does an attacker have to invest?’

We consider multi-step attacks and, thus, we assume that
complex attacks are composed of elementary steps. This as-
sumption is widely used in attack modelling formalisms such
as attack trees or attack nets [14, 19, 20, 27]. In an actual at-
tack the steps are executed sequentially.

B. Distributions

We consider a random variable X that describes the time
of a successful attack step execution. We are interested in
the cumulative distribution function (CDF) that represents
the probability that the attack step is executed successfully
within t time units, that is the function f(t) = P[X ≤ t]
of X . We need to make an assumption for the underlying
family of distributions and then estimate the corresponding
parameters.

Experiments on the intrusion into computer systems
showed that the intrusion process consists of different phases
with an exponentially distributed execution time [12]. Es-
pecially in the context of complex analysis the exponential
distribution has its merits: its shape is completely defined by
one parameter, it is tractable and can easily be embedded in
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complex calculations. Let X be an exponentially distributed
random variable, then its CDF is given by

P(X ≤ t) = 1− e−λt, for any t ∈ R+.

Its expected value is given by E[X] = 1
λ .

C. Attack steps and attacks

Formally, an attack step is a step name associated with an
execution time parameter and a success probability. The at-
tacker needs to invest an exponentially distributed amount of
time to successfully execute the attack step, while the success
probability describes the chance to successfully complete it.
Definition 1 An attack step a is an elementary, non-
refinable step in the course of an attack. Its execution time
is exponentially distributed with parameter λa ∈ R+. The
probability that the attacker succeeds in the execution of the
step is denoted by pa ∈ [0..1].

Note that if one has information about the correlation be-
tween pa and λa, then one could use this in the model [29],
but for simplicity, we will not pursue that direction here. The
parameter λa intrinsically reflects the labour intensity of at-
tack step a. As the expected execution time of an attack step
is 1
λa

, lower values for λa reflect a higher labour intensity for
a.

To achieve his goal, the attacker has to execute a number of
attack steps. We call this sequence of attacks steps an attack
scenario.
Definition 2 An attack scenario A is a sequence of attack
steps A = a1, . . . , an. We denote with n = |A| the number
of attack steps. The attack step a = A[i] at position i is in
the following abbreviated with i, as A is always clear from
the context.

An example attack scenario is a ‘laptop theft’, composed
of the steps ‘get access to room’, ‘cut lock’ and ‘escape’. The
attacker has to succeed in all three steps to finish the attack
successfully. The model of this attack is presented in Fig. 1.
The execution of each attack step i takes an exponentially
distributed time with parameter λi. The attacker either fails
with probability 1−pi or succeeds with probability pi, and if
he fails one attack step, the whole attack is aborted, indicated
by the black absorbing states. If the attacker succeeds in the
execution of i, he immediately starts with the execution of
attack step i+1. The attack is successful, if all 3 attack steps
succeed.

get access cut lock escape

p1 λ1 p2 λ2 p3 λ3

1− p1 1− p2 1− p3

Figure. 1: The attack scenario ‘laptop theft’ composed of 3
attack steps, each defined by parameter λi and probability
of success pi, i = 1, 2, 3. States in which the attack fails
are coloured in black. The state in which the attacker has
reached his goal is coloured in grey.

We define an attacker’s actual attempt as an attack execu-
tion. An attack execution consists of the attacker’s plan in the

Table 1: Four observations O1, O2, O3 and O4 of attack ex-
ecutions. The observation of one attack step i is denoted as
tuple (ai, ri, ti).

rE tE 1st step 2nd step 3rd step 4th step 5th step
O1 1 54 (a3, 1, 9) (a2, 1, 14) (a7, 1, 2) (a1, 1, 20) (a2, 1, 9)
O2 0 17 (a7, 1, 3) (a2, 1, 1) (a1, 0, 13)
O3 1 94 (a1, 1, 43) (a4, 1,⊥) (a3, 1,⊥) (a2, 1,⊥)
O4 0 42 (a1, 1, 35) (a2, 1,⊥) (a4,⊥,⊥) (a6,⊥,⊥) (a5,⊥,⊥)

form of an attack scenario and information about the duration
and success for each involved attack step. If the attacker fails
at a certain step, the attack is aborted and, thus, there is no
information on subsequent steps.
Definition 3 An attack execution E = (A, t1, . . . , tm1 ,
r1, . . . , rm2) of attack scenario A consists of execution times
t1, . . . , tm1

∈ R≥0 and results r1, . . . , rm2
∈ {0, 1} for the

involved attack steps, where ti is the time needed to carry out
step i; ri = 0 indicates the failure and ri = 1 the success of
attack step i. The first attack step at which the attacker fails
is denoted by fE; if all attack steps are executed successfully,
we define fE = n+ 1. We only consider execution times for
successfully executed steps, so m1 = fE − 1, and results for
all steps that the attacker worked on, so m2 = min{fE , n}.
An attack execution fails, if at least one attack step fails, so
the result of E is defined by rE = min{ri|i = 1, . . . ,m2}.
Similarly, the total execution time tE ∈ R≥0 of E is denoted
by tE =

∑fE−1
j=1 ti.

In practice, data about actual attacks is rare and mostly in-
complete. Exact execution times of individual attack steps
may not be retrievable, and it might not be possible to de-
termine the exact point where an attack failed even though
the total execution time and the result of the whole attack
execution is known.
Definition 4 An attack observation O = (A, tE , rE , T,R)
of an attack execution E of attack scenario A consists of
the total execution time tE , the result of the attack execution
rE , and functions T : step → {tstep,⊥} and R : step →
{rstep,⊥} that define which execution times, respectively re-
sults, were observed. For R(a) = ⊥ the result of attack step
a is not known, T (a) = ⊥ analogously. If T (i) = ti and
R(i) = ri for all i = 1, . . . , n, i.e. all results and times are
observed, we say that the observation is complete.
Note that the failed step fE might not be known, in which
case we set m1 = m2 = n. We assume that the attack
scenario A as well as rE and tE are known. Note that this
assumption does not imply that this information is always
retrievable, since this is in general not the case. It rather sug-
gests that it is of vital importance with respect to the analysis
techniques described below.

Table 1 illustrates four example observations of attack exe-
cutions. Some steps occur in more than one scenario, but not
necessarily at the same index. In physical penetration test-
ing, entering a building would typically occur often. O1 is a
complete observation of a successful attack;O2 is a complete
observation of an attack execution that failed at step a1; O3

is an incomplete observation of a successful attack execution
in which only the execution time of the first attack step is
known; O4 is an incomplete observation of an unsuccessful
attack execution in which neither all execution times nor the
failed attack step is known.
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D. Problem statement

On the basis of these definitions, we aim at solving the fol-
lowing problem:

Under the assumption that the execution time
of attack step a is exponentially distributed with
parameter λa and its success probability governed
by pa, find good estimates λa and pa on the basis
of a number of attack observations.

IV. Basic parameter estimation

A. Static estimation

The most intuitive approach to derive estimates λa and pa for
an attack step a is the computation of the arithmetic mean, or
simply mean, over a series of observations. Given a set of
attack observations Ω = {O1, O2 . . . } in which an attack
step a occurs multiple times, we can estimate the success
probability of a by calculating the mean of our sample set.
Let r1, . . . , rk denote the observations of the results of attack
step a within Ω, then

pa =
1

k

k∑
j=1

rj . (1)

For example, the estimate for pa1 on the basis of Table 1 is
pa1 = 1+1+0+1

4 = 3
4 . The parameter λa, which determines

the shape of the CDF of the distribution of the execution time,
can be derived in a similar fashion. Given observed execution
times t1, . . . , tk of attack step a within Ω, we can derive the
mean of the execution time

ta =
1

k

k∑
j=1

tj (2)

and use the fact that 1/λa is the mean or expected value of
the exponential distribution to derive λa = 1/ta. For ex-
ample, λa1 is estimated from the data in Table 1 as λa1 =

4
20+13+43+35 = 0.009. The advantage of these estimates is
that they are consistent, i.e. on average we hit the true value,
and unbiased, i.e. for k → ∞ we hit the true value with ar-
bitrary precision [17]. Moreover, the standard error of the
mean, governed by σ√

k
with σ the standard deviation of one

single observation, vanishes with increasing k. With these
values we can derive confidence intervals to argue about the
reliability of the estimate.

However, this approach has the following shortcomings:

• The values ri, . . . , rn and ti, . . . , tn have to be known.
Thus, incomplete observations with either unknown ex-
ecution times or unknown results have to be ignored
when deriving the estimate. As we argued before, in-
complete data is rather typical in attack observations
and we need to find mechanisms which can deal with
this;

• The number of observations k should be sufficiently
large to achieve a reasonable accurate estimate. How-
ever, there is usually not sufficient amount of data about
attacks available to yield good estimates. A possible so-
lution to this dilemma is that in most cases a reasonable

initial estimate for painit and λa
init

can be provided
on the basis of expert opinion and previous experiences,
and this initial estimate can then be updated when data
becomes available. These updates are not possible with
the static approach outlined above.

B. Dynamic estimation

To deal with the shortcomings above, we propose a technique
that updates the estimates λa and pa on a step-by-step basis.
Starting from initial values λa

init
and painit, we iteratively

update these value with one observation at a time. The ini-
tial values λa

init
and painit can be chosen on the basis of

expert opinions and previous experiences. As the quality of
the observation varies from case to case, we provide update
techniques for different observation scenarios.

Complete observation: all input data known Complete
information about attacks can typically be derived from pen-
etration tests. Assume we have a complete observation O =
(A, tE , rE , T,R) of an attack execution E and we want to
estimate the parameters for some attack step i. Furthermore,
we have initial estimates λi

init
and piinit based on previous

observations. Since 1
λi

is the expected execution time, we
use the observation ti in O to obtain observation-based es-
timates λi

O
= 1

ti
. We then update our initial estimates by

performing a linear interpolation between λi
init

and the ob-
servation based estimates λi

O
. If E was successful, we do

so for each involved attack step; if E failed, only the steps
i = 1, . . . , fE − 1 that were successfully executed are up-
dated. Note that we do not consider the execution times of
attack steps that fail, because λi describes the execution time
for successful steps. Formally, we have

λi ← cλiλi
init

+ (1− cλi)λi
O
, i = 1, 2, . . . , fE − 1. (3)

The impact of the observation on the new estimate is deter-
mined by cλi ∈[0,1]. This value reflects the confidence in the
previous estimate. The motivation for this parameter is that
a higher confidence in the initial estimate should decrease
the weight of observations on the update: cλi = 1 expresses
100% confidence in the initial estimate, so that it is no longer
updated. On the contrary, cλi = 0 expresses absolute un-
certainty. This parameter is discussed in more detail in the
following paragraph.

The parameter pi is updated analogously. From the obser-
vation we obtain the estimate piO = ri and derive the new
estimate pi as a linear interpolation between this value and
the previous estimate piinit with confidence value cpi

pi ← cpipi
init + (1− cpi)ri , i = 1, 2, . . . , fE . (4)

The choice of confidence values In principle, the iterative
approach does not guarantee a relation with the mean val-
ues that would be obtained from a static estimation. How-
ever, below we explain how the confidence values can be
choosen in such a way that it is possible to obtain the arith-
metic mean with the dynamic estimation, and corresponding
properties and guarantees for the accuracy of the obtained
estimate hold.
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Assume we want to estimate pa from a set of observations
Ω = {O1, O2 . . . }. The dynamic estimation requires ini-
tial estimates painit prior to the first update. Together with
Ω they constitute the input of the dynamic estimation. The
value cinitpa expresses the, rather subjective, confidence in this
initial estimate. Let r1, . . . , rk denote the observed results of
attack steps a in Ω and cjpa the confidence in pa after the j-th
update. The estimate pa1 after the first update step is then

pa
1 = pa

initcinitpa + r1(1− cinitpa ).

Recursively, the estimate paj after each successive update
j = 2, . . . , k is

pa
j = pa

j−1cj−1pa + rj(1− cj−1pa ).

Assume we have no information on painit, so cinitpa = 0.
We want to find values cjpa for all j = 1, . . . , k − 1 such that
each result observation r1, . . . , rk impacts the final estimate
pa
k with the same weight and we thus obtain the arithmetic

mean. This is achieved by cjpa = 1
j , which yields

pa
k = (((r1

1

2
+r2

1

2
)
2

3
+r3

1

3
)
3

4
. . . )

k − 1

k
+rk

1

k
=

1

k

k∑
j=1

rj .

We now consider the more general case that we have some
knowledge about painit with cinitpa > 0. We further want to
obtain an update rule

cjpa ← cj−1pa + ρ, (5)

such that cjpa ∈ [0, 1], and each result observation r1, . . . , rk
impacts the final estimate pak with the same weight regard-
less of the initial confidence cinitpa , i.e.

pa
k = cinitpa pa

init + (1− cinitpa )
1

k

k∑
j=1

rj .

If we consider the last two update steps k and k− 1, then the
weight of rk in pak is (1−ck−1pa ); while the weight of rk−1 is
determined by (1−ck−2pa ) ·ck−1pa as the product of the weights
of rk−1 and pak−1. As this holds for all pairs j, j − 1 with
j < k we obtain

(1− cjpa) = (1− cj−1pa ) · cjpa .

We use (5) and set cjpa = cj−1pa + ρ. Solving the resulting
equation with respect to ρ yields

ρ =
1

( 1

1−cj−1
pa

)( 1

1−cj−1
pa

+ 1)
. (6)

By applying the update rule in (5) in the step-wise updates
we now make sure that each prior observation has the same
impact on the current estimate pak, independent of k. Obvi-
ously, the same holds for the estimate λa

k
.

Incomplete observation: unknown step times Assume
we have an incomplete observation O = (A, tE , rE , T,R)
where not all execution times are observed, i.e. T (i) = ⊥
for at least one attack step i. In the worst case we might even

have T (i) = ⊥ for all i = 1, . . . , n. In practice one faces this
problem if information about the total execution time can be
obtained but not broken down to the different attack steps.
In the calculation of the mean we have to ignore all missing
execution times. However, in the dynamic case we can use
the current estimate 1/λi for the execution time to retrieve
the missing execution times.

We first consider the worst case scenario T (i) = ⊥ for
all i = 1, . . . , n, with tE and fE known. We assume that
the proportion of the execution time of each attack step cor-
responds to the proportion on the basis of the previous esti-
mates. In other words, we estimate

ti = tE ·
1/λi∑fE−1

j=1 1/λj
∀i = 1, . . . , fE − 1.

We can perform a similar estimation if any subset of the exe-
cution times of all steps is observed: Let t∗E be the sum of all
known execution times in the observation and J the set that
contains the indexes of all attack steps for which the execu-
tion time is unknown, then

ti = (tE − t∗E) · 1/λi∑
j∈J 1/λj

∀i ∈ J. (7)

With these estimates one can then perform the updates ac-
cording to (3).

Incomplete observation: unknown failed step Assume
we have an incomplete observationO = (A, tE , rE , T,R) in
which some results are missing, i.e. R(i) = ⊥ for at least
one i. Since we assume that we always know the outcome
rE of the whole attack execution, this is only a problem if
the attack failed, i.e. rE = 0, but we do not know at which
step fE . This kind of observation occurs in practice when the
attacker’s goal and attack plan can be reconstructed from the
reported information, but the reason for his failure remains
unknown.

Assume that the last observed successful attack step in O
is s and we know that the attack failed at some point after
that, so that ri = 0 for some i = s + 1, . . . , n. Note that
s = 0 if no attack step result is known. For steps i = 1, . . . , s
we can update with (4). For steps i = s + 1, . . . , n we can
use our previous estimate pi to estimate the probability pFi
that the attack failed at this step. For the attack execution to
fail at step i, the previous steps s + 1, . . . , i − 1 have to be
executed successfully:

pFi
∗

= (1− pi)
i−1∏

j=s+1

pj , i = s+ 1, . . . , n.

Since pFi represents the probability that the attacker fails at
this step, we need

∑n
j=s+1 p

F
j = 1 to hold. Thus, we nor-

malise

pFi = pFi
∗ 1∑n

j=s+1 p
F
j

∗ , i = s+ 1, . . . , n. (8)

We can then update pi by weighting the probability of fail-
ure pFi against the probability of success pSi =

∑n
j=i+1 p

F
j .

Note that pSi +pFi < 1 if the probability that the attack failed
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Table 2: Update procedures for λi and pi on the basis of
complete and incomplete observations.
Scenario Input Mechanism
Update of λi with A, ti, fE > i, update with (3)
complete observation λi, cλi
Update of λi with A, tE , fE > i, find ti with (7)
incomplete observation λi, cλi update with (3)
Update of pi with A, ri, update with (4)
complete observation pi, cpi
Update of pi with A, rE = 0, find pFi with (8)
incomplete observation pi, cpi update with (4),(9)

before i is greater than zero. We address this uncertainty by
multiplying the weight of the update by 1− (pSi + pFi ):

pi ← (1−(1−cpi)(pSi +pFi ))pi+(1−cpi)(pSi ·1+pFi ·0) (9)

Table 2 summarises the above ideas by giving an overview
on how to perform updates with either complete or incom-
plete observations. We remark that, in case one wants to
perform a number of updates with complete and incomplete
observations at the same time, one should perform updates
on the complete observations first.

V. Item Response Theory Model

The more skilled and resourceful the attacker is, the more
likely he will succeed in the execution of even difficult steps.
It is therefore better to consider the properties of both de-
fender and attacker in the estimations of attack step parame-
ters. In this section we propose a model for the estimation of
properties of attack steps for attacks in which the identity of
the attacker is known. This is typically the case in a penetra-
tion testing setting. As both attacker skill and step difficulty
are assessed, this model is very similar to what is called item
response theory in social science.

The standard assumption in item response theory is that
if the ratings of both “competing” actors are equal, then the
probability of success is 0.5. For example, the probability of
a person with skill 500 solving a problem with difficulty 500
is 0.5. A logistic distribution is typically used to relate the
rating difference of the actors to the probability of success.
We use a dynamic version of item response theory here, in
which ratings are updated after each event. This is how the
Elo rating for chess players works [7], as well as the adaptive
math exercises in Math Garden [13]. Details can be found in
[25].

In the original Elo framework, there is only one value to
be updated. Here, like in [29], we take both probability of
success and execution time into account. As we distinguish
between the output parameters execution time and probabil-
ity of success, we also define two parameters for each at-
tacker, or rather attacker profile, and attack step to represent
the individual impact on these two outputs. The attacker’s in-
fluence upon the probability of success is called skill, and his
speed impacts the execution time of an attack step. From the
perspective of the attack step the probability of success is de-
termined by its difficulty and the execution time by its labour
intensity. These parameters form the basis of our analysis
framework depicted in Figure 2. In the following, these pa-
rameters will be expressed by Elo ratings.

Attack step
parameters

Attacker
parameters

Attacker
skill (β)

Attack step
difficulty (δ)

Attacker
speed (τ )

Attack step
labour in-
tensity (θ)

Outcome
/ Result

Execution
time

Figure. 2: Illustration of the hierachical framework for the
modelling of execution times and attack outcome, in the style
of [29].

In order to use the time parameter in combination with rat-
ings, we need a definition that allows us to relate the speed
and labour intensity ratings, just like the skill and difficulty
ratings are related by the assumption that equality of the rat-
ings gives 0.5 probability of success. Here, we assume that
in case the ratings are equal, the expected duration is 1 time
unit, or λ = 1. The dependencies of these parameters with
respect to the formation of values for outcome and execution
time are defined as follows.

A. Distribution of Execution Time

For an attack A with attacker j we denote with τj the speed
of the attacker and with θi the labour intensity of attack step
i. The relation between these two parameters is defined as
in RT models [29]: the execution time tij of attack step i for
attacker j can be derived by

tij =
θi
τj
. (10)

Speed is thus defined by decomposing the execution time into
two parameters, one for the speed of the attacker and one for
the labour intensity of the attack step. We now want to obtain
a distribution function for the execution time with respect to
these two parameters. Remember that we assume the execu-
tion time of attacker j for attack step i to be exponentially
distributed with parameter λij and expected value 1

λij
. We

thus assume 1
λij

= tij = θi
τj

and derive the CDF for the
execution time X of attack step i

P(X ≤ t) = 1− e−
τj
θi
t
, for any t ∈ R+. (11)

B. Probability for Attack Step Outcome

Similarly to above, we define βj as the skill level of attacker
j and δi as the difficulty of attack step i. The probability of
the attacker succeeding in the attack step depends jointly on
his skill and the difficulty of the attack step. We describe
this probability by a logistic model (1PL or Rasch model,
[26]), which expresses the probability to successfully execute
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attack step i (denoted as ri = 1) as

P(ri = 1) =
eβj−δi

1 + eβj−δi
=

1

1 + eδi−βj
. (12)

C. Updates of Elo ratings

In this section we present algorithms to systematically up-
date the Elo ratings for θ, τ , δ and β on the basis of one
single observation. In a penetration testing setting one can
ask the testers to monitor the time they spent on the different
attack steps precisely. Moreover, one knows the identity of
the attackers, and can therefore maintain Elo ratings for each
of them on the basis of past performance. In this case, for
each attack step i = 1, 2, . . . one can estimate, store, and
update the following information:

1. difficulty δi, expressed as Elo rating;

2. labour intensity θi expressed as Elo rating;

3. confidence cθi of the labour intensity estimate.

Additionally, one can estimate information for each tester
j = 1, 2, . . . :

1. skill level βj , expressed as Elo rating;

2. speed level τj , expressed as Elo rating;

3. confidence cτj of the speed estimate.

Beyond the scope of penetration tests accurate data might not
be available and we have to resort to the techniques described
in section IV-B to fill the gaps.

Update algorithm for θi and τj Assume we have ob-
served an attack execution E containing attack steps
a1, . . . , an and have identified attacker j. Furthermore, we
have information on the timing of the attack in the form of
the total execution time tE and a subset T of the execution
times of each involved attack step. The execution times are
dependent on both τj and θi through equation (10), so that
we update both parameters simultaneously on the basis of
previous estimates. The update routine for θi is presented in

Algorithm 1 Update of θ1, . . . , θm1

Require: O, θ1, . . . , θm1 , cθi , . . . , cθm1
τj

if fE known then
if O is incomplete then
tj ← ESTIMATEEXECUTIONTIMES(T, tE , θ1, . . . , θn)

end if
for i = 1, . . . , fE − 1 do
θOi ← τjtij
θi ← cθiθi + (1− cθi)θOi
UPDATECONFIDENCE(cθi)

end for
end if

Algorithm 1. We update τj and cτi with a given observa-
tion O, with tj being a vector containing all execution times
tij . If the attack execution failed, we assume that we can
only perform sensible updates if fE is known; otherwise we
are also missing execution times which we cannot estimate

with (7) since it requires fE . If the observation is incom-
plete and does not contain all execution times, we estimate
missing data with ESTIMATEEXECUTIONTIMES by apply-
ing (7), where tj is the vector containing all execution times.
For each attack step up to fE − 1, we then derive an estimate
θOi based on the single observation O through equation (10).
We finally update θi with a linear interpolation between the
previous estimate and θOi as in (3). The impact of θOi upon
the update is determined by confidence value cθi . Finally, the
function UPDATECONFIDENCE updates the confidence val-
ues with (5) to make sure that each subsequent observation
has the same impact upon the final estimate.

The update of τi is executed similarly. For each attack step
we calculate the observation based estimate τOij and update
by linear interpolation. We assume that the attacker’s speed
level does not evolve in the course of one attack and update
τj only once on the basis of all execution times: with (10)
we derive for each step an observation based estimate τOij
and calculate the arithmetic mean τOj of these values. The
impact of τOij on the update is determined by confidence cτj .

Algorithm 2 Update of τj
Require: O, θ1, . . . , θm1

, τj , cτj
if fE known then

if O is incomplete then
tj ← ESTIMATEEXECUTIONTIMES(T, tE , θ1, . . . , θn)

end if
τOj ← 0
for i = 1, . . . , fE − 1 do
τOij ← θi

tij

τOj ← τOj + τOij
end for
τOj ←

τOj
fE−1

τj ← cτjτj + (1− cτj )τOj
UPDATECONFIDENCE(cτj )

end if

Update algorithms for δi and βj Given an attack observa-
tion O, we want to update the difficulty δi for each involved
attack step i and the skill level βj for attacker j. As above, we
execute both updates simultaneously. The update routine for
δi is presented in Algorithm 3. If O is incomplete and does
not include the information at which step an unsuccessful
attack execution failed, we first determine the last observed
attack step s with GETLASTKNOWNSTEPRESULT. We then
use the function ESTIMATEFAILPROB to determine for each
step i = s + 1, . . . ,m2 the failure probability pFi and store
it in the vector pF . The function computes (8) by exploiting
(12) to get pi = 1

1+eδi−βj
. Note that if fE is not known,

we have m2 = n. In contrast to the updates above, we can-
not derive an observation based estimate, since ri ∈ {0, 1}.
So, instead of performing a linear interpolation, we update δi
by calculating the difference between the expected probabil-
ity p, computed with (12), and the observed result. We then
add this value to the previous estimate, as in classic Elo mod-
els. Since this update routine already assures that each update
equally impacts the final estimate, we do not need confidence
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values in this context. However, an initial value δiniti is re-
quired prior to the first update. For steps s + 1, . . . ,m2 we
update δi by using a slight adaptation of (9).

Algorithm 3 Update of δ1, . . . , δm2

Require: O, δ1, . . . , δm2
, βj

s← m2

if O is incomplete then
s← GETLASTKNOWNSTEPRESULT(O)

pF ← ESTIMATEFAILPROBS(δs+1, . . . , δm2)

pS ← ESTIMATESUCPROBS(pF )
end if
for i = 1, . . . , s do
p = 1

1+eδi−βj

δi ← δi + (p− ri)
end for
for i = s+ 1, . . . ,m2 do
p = 1

1+eδi−βj

δi ← δi + pF i(p− 0) + pSi(p− 1)
end for

The update procedure for attacker skill βj of attacker j is
executed analogously to Algorithm 3. In this case we update
by subtracting the expected probability p from the result ri,
since a successful execution of an attack step should increase
the Elo value.

Algorithm 4 Update of βj
Require: O, δ1, . . . , δm2

, βj
if O is incomplete then
s← GETLASTKNOWNSTEPRESULT(O)

pF ← ESTIMATEFAILPROBS(δs+1, . . . , δm2
)

pS ← ESTIMATESUCPROBS(pF )
end if
for i = 1, . . . , s do
p = 1

1+eδi−βj

βj ← βj + (ri − p)
end for
for i = s+ 1, . . . ,m2 do
p = 1

1+eδi−βj

βj ← βj + pF i(0− p) + pSi(1− p)
end for

VI. Simulation

We implemented the framework in a simulation program as
a proof-of-concept. Each simulation run consists of a test
set that contains k observations of attacks. Each attack is
randomly synthesised from a pool of attack steps. Further,
each attack step in this pool has a true value θtruei for its
labour intensity and a true value δtruei for its difficulty.

We want to investigate how fast the quality of the rating θi
improves with a growing number of observations, and exe-
cute several simulation runs with varying k. In each simula-
tion run we randomly generate k attacks; the execution times
of all involved attack steps are generated randomly with the
CDF in (11). The attacker speed τj is randomly generated
for each observation.

Initially we set cθi = 0, so we assume there is no initial
estimate, and use all k observations to perform step-wise up-
dates on θi. To measure the accuracy of the result, we com-
puted the sample variance in percentage of the true value for
N = 5000 simulation runs, i.e.

σ2
N−1 =

1

(N − 1)θtruei

N∑
j=1

(θji − θ
true
i )2.

We conducted similar experiments for the attack step dif-
ficulty δi. Here, the outcome of each attack step is randomly
generated by using a Bernoulli distribution where the param-
eter is chosen according to (12). The results are shown in
Figure 3.
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(b) Simulation result for δi

Figure. 3: The sample variance σ2
N−1 (in percentage) of sim-

ulation runs on θi and δi.

The step-wise update algorithms iteratively improve the
quality of the estimates, especially significantly for the
labour intensity. Quite accurate results with a sample vari-
ance below 0.5 can be achieved after about 25 updates.

VII. Application

The framework outlined above paves the way towards ob-
taining quantitative results from penetration tests. The prac-
tial applicability depends to a large extent on the goal of the
measurements. If one wants to obtain statistically significant
results, one would need to set up a large-scale experiment
with many penetration testers. Testers need to try the same
attacks in order to be able to update their ratings. This can be
done for research purposes, and it has been shown for quali-
tative penetration testing using social engineering [6]. Based
on the ideas developed in this paper, we are planning sim-
ilar experiments to obtain quantitative data. However, such
experiments would most likely be unrealistic in a corporate
risk management setting.

Still, as our results show, one can obtain reasonable esti-
mates with only a few attempts and a few penetration testers.
A reasonable strategy for practical testing could be to let 2 or
3 penetration testers execute the same scenarios, monitor the
variance of the outcomes, and hire more penetration testers
only if the variance is high.

Quantitative penetration testing has the advantage that im-
provements in security can also be quantified. If the test is re-
peated after improvements have been made, the newly mea-
sured difficulty of attack steps can be compared against the
previous value. With item response theory, this is possible
even if different penetration testers are involved, assuming
the ratings of the testers are sufficiently accurate.

Apart from yielding quantitative results, our proposal has
another advantage: ratings may motivate penetration testers
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to perform well. Our hypothesis is that penetration testers
would be keen on obtaining high ratings, and therefore would
be incentivised to do a good job. To test this hypothesis, one
would need to run two parallel penetration tests, one with and
one without the rating incentive, and evaluate differences in
the time needed to succeed. Obviously, ratings could also be
an incentive to cheat in reporting results, for example by re-
porting a shorter time than actually needed, or sharing ideas
with other penetration testers, in order to increase one’s rat-
ing. If this turns out to be a real problem, reporting would
have to be done by an independent actor. On the other hand,
security officers might be tempted to simplify attack steps
hoping to increase their budget.

Finally, if there is not enough data to support difficulty
ratings for steps, one can also rate organisations instead of
attack steps. For each attack observation, the ratings of the
attacker/tester and the rating of the organisation would then
be updated. In this case, one would not obtain quantitative
results of steps, but one would still have the advantage of
being able to say how likely it would be that an attacker with
a low rating would succeed in attacking the organisation.

The main application of quantitative penetration testing is
foreseen in quantitative security risk management, requiring
quantitative security metrics. Based on the Risk Taxonomy
of The Open Group [28], which we use in our project, quan-
titative penetration testing provides a metric for the vulner-
ability of the organisation to attacks. However, in order to
fully estimate risk, metrics for the expected frequency of at-
tacks and the impact of attacks are needed as well. These are
not trivial, and especially a suitable model of the (real) at-
tackers is required to estimate their behaviour in response to
the perceived gain, effort (time), and probability of success.
We address such questions in other papers. Here, the claim
is that our new proposal for quantitative penetration testing
provides an important step towards fully quantitative secu-
rity risk management, and in particular decision support for
investment in countermeasures.

VIII. Conclusions and Discussion

In this paper, we have presented a model-based framework
for quantitative penetration testing, which is the first such
framework as far as we are aware of. The approach features
the registration of the time taken in testing, and the calcula-
tion of the difficulty of attack steps based on the time and the
skill of the tester. The skill of the tester is also updated based
on the performance in the tests.

Beyond the scope of penetration tests the approach can as
well be used with real attack data, but in a more limited sense,
since the identity of the attacker is unknown, and the time for
the individual steps may not be available either.

The main limitation of the approach lies in the amount of
data required to obtain statistically significant results. How-
ever, as we have discussed, in many practical settings it may
be sufficient to gain reasonable confidence in the estimates
by repeating the test scenarios a few times, and monitoring
the variance in the outcomes. In any case, the simple addition
of time metrics to penetration testing already improves upon
the existing situation in terms of the information provided for
security risk management purposes.

One possible extension would be separating the time spent

by the attacker, and the total time elapsed before success.
This would for example be relevant in a phishing attack, in
which the time spent per attempt is negligible, but the time
until success may be much longer. Another extension in-
volves multiple skill ratings for the testers, for example sepa-
rating their hacking, physical access, and social engineering
skills. The rating to be updated is then dependent on the na-
ture of the attack step.

In the future, we plan to use this approach for gathering
data on the difficulty of attack steps, including social engi-
neering, to be used in the case studies in our current project.
We expect the case studies to provide insights for further ex-
tensions of the framework.

Acknowledgement

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement ICT-318003 (TRES-
PASS). This publication reflects only the authors’ views and
the Union is not liable for any use that may be made of the
information contained herein.

References

[1] W. Allsopp. Unauthorised Access: Physical Penetra-
tion Testing For IT Security Teams. Wiley, Chichester,
2009.

[2] F. Arnold, W. Pieters, and M.I.A. Stoelinga. Quantita-
tive penetration testing with item response theory. In
9th Int. Conf. on Information Assurance and Security.
IEEE, 2013.

[3] M. Bishop. About penetration testing. Security & Pri-
vacy, IEEE, 5(6):84–87, 2007.

[4] Bob Blakley, Ellen McDermott, and Dan Geer. Infor-
mation security is information risk management. In
Proceedings of the 2001 Workshop on New Security
Paradigms, NSPW ’01, pages 97–104. ACM, 2001.

[5] J. P. Ceraolo. Penetration testing through social en-
gineering. Information systems security, 4(4):37–48,
1996.

[6] T. Dimkov, W. Pieters, and P. H. Hartel. Two method-
ologies for physical penetration testing using social
engineering. In Proceedings of ACSAC, pages 399–
408. Centre for Telematics and Information Technology
University of Twente, 2010.

[7] A. Elo. The rating of Chessplayers, Past and present.
Arco Publishers, New York, 1978.

[8] S. Furnell and M. Papadaki. Testing our defences or
defending our tests: the obstacles to performing secu-
rity assessment references. Computer Fraud & Secu-
rity, 2008(5):8–12, 2008.

[9] R. Gula. Broadening the scope of penetration testing
techniques. Enterasys Networks, 1999.



127 Arnold et al.

[10] H. Hasle, Y. Kristiansen, K. Kintel, and E. Snekkenes.
Measuring resistance to social engineering. In Informa-
tion Security Practice and Experience, pages 132–143.
Springer, 2005.

[11] A. Hudic, L. Zechner, S. Islam, C. Krieg, E.R. Weippl,
S. Winkler, and R. Hable. Towards a unified penetration
testing taxonomy. In 2012 International Conference on
Privacy, Security, Risk and Trust (PASSAT), and 2012
International Confernece on Social Computing (Social-
Com), pages 811–812. IEEE, 2012.

[12] E. Jonsson and T. Olovsson. A quantitative model
of the security intrusion process based on attacker be-
havior. IEEE Transactions on Software Engineering,
23(4):235–245, 1997.

[13] S. Klinkenberg, M. Straatemeier, and H. L. J. van der
Maas. Computer adaptive practice of maths ability us-
ing a new item response model for on the fly ability and
difficulty estimation. Comput. Educ., 57:1813–1824,
2011.

[14] B. Kordy, L. Pietre-Cambacedes, and P. Schweitzer.
DAG-based attack and defense modeling: Don’t miss
the forest for the attack trees. Computer Science Re-
view, 2014.

[15] I. Kotenko, M. Stepashkin, and E. Doynikova. Se-
curity analysis of information systems taking into ac-
count social engineering attacks. In 22nd Euromi-
cro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 611–618. IEEE,
2011.

[16] R. Langner. Stuxnet: Dissecting a cyberwarfare
weapon. Security & Privacy, IEEE, 9(3):49 –51, 2011.

[17] E.L. Lehmann and G. Casella. Theory of Point Estima-
tion. Springer Texts in Statistics. Springer, 1998.

[18] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mel-
lor, S. Page, D. Wright, J. Dobson, J. McDermid, and
D. Gollmann. Towards operational measures of com-
puter security. Journal of Computer Security, 2(2–
3):211–229, 1993.

[19] S. Mauw and M. Oostdijk. Foundations of attack trees.
In International Conference on Information Security
and Cryptology, ICISC 2005. LNCS 3935, pages 186–
198. Springer, 2006.

[20] J. P. McDermott. Attack net penetration testing. In
Proceedings of the 2000 workshop on New security
paradigms, pages 15–21. ACM, 2001.

[21] V. Nunes Leal Franqueira, R.H.C. Lopes, and P.A.T.
van Eck. Multi-step attack modelling and simulation
(MsAMS) framework based on mobile ambients. In
Proceeding of the 24th Annual ACM Symposium on Ap-
plied Computing, SAC’2009, pages 66–73, New York,
2009. ACM.

[22] W. Pieters, T. Dimkov, and D. Pavlovic. Security policy
alignment: A formal approach. Systems Journal, IEEE,
7(2):275–287, 2013.

[23] W. Pieters, Z. Lukszo, D. Hadžiosmanović, and
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