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Abstract:
Selective encryption is a concept in which the main goal is
to reduce computational cost while providing confidentiality
by encrypting only chosen parts of the information to be
protected. Previous work on selective encryption has mainly
been aimed towards multimedia applications in order to reduce
the overhead induced by encryption while still making the
information perceptually secure to a desired protection level.
This was accomplished by utilizing the fact that different parts
of the information have different impacts on our perception
senses, i.e., eyes and ears. How computationally secure the
information is when using selective encryption has however
only briefly been mentioned or rudimentarily analyzed. In
this paper, we therefore investigate the security implications
of selective encryption by generalizing the work on entropy
of selectively encrypted strings to several dimensions and
applying it to bitmap images. The generalization is done by
constructing information neighborhoods from the order of
languages concept and cellular automata theory to capture and
model information dependencies in several dimensions.
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I. Introduction

When information is protected, a computational cost is im-
posed on the computing environment. For small comput-
ing devices with restricted resources, such as mobile phones
or sensor network devices, the security mechanisms that are
used can put a significant extra burden on performance and/or
energy consumption. The concept of selective encryption
may be used to reduce computational cost when providing
confidentiality, which provides confidentiality by encrypting
only chosen parts of the information. Selective encryption
can also be used to trade confidentiality against computation-
al cost by altering the distribution of encrypted parts. Theau-
thors in [7] presented a generic selective encryption model.
In the proposed model, the information,I, is divided inton
equally sized parts,Ii, 0 ≤ i < n. Hence,

I =
n−1

|
i=0

Ii (1)

where ’|’ is the concatenation operator. From a bit vector,
b, that controls which parts of the information to encrypt,
the selectively encrypted information,E(I), is constructed
as follows:

E(I) =
n−1

|
i=0

{

Ii if bi mod |b| = 0
E(Ii) if bi mod |b| = 1

(2)

Figure 1 illustrates selectively encrypted information consist-
ing of five encrypted parts (in gray) and four unencrypted
parts (in white).

Figure. 1: A selectively encrypted information consisting of
five encrypted parts (in gray) and four unencrypted parts (in
white).

Previous work on selective encryption has mainly been
aimed towards multimedia applications with a short infor-
mation lifetime, such as TV or radio broadcasts of events,
in order to reduce the overhead induced by encryption while
still making the information perceptually secure. This was
accomplished by utilizing the fact that different parts of the
information have different impacts on our perception sens-
es, i.e., our eyes and ears. The perception impact has also
been used in lossy compression of information, like MP3 or
JPEG compression, to keep more sensitive parts of the infor-
mation more intact and thereby not destroying the perception
beyond a desirable threshold. However, the security implica-
tions of how computationally secure the information is when
using selective encryption have only briefly been mentioned
or rudimentarily analyzed, e.g., in [17].
When measuring how computationally secure selectively en-
crypted information is, it must be taken into consideration
that the unencrypted parts may, due to information depen-
dencies, leak information to an attacker about the encrypted
parts. This extra information must be considered and includ-
ed in the used security measures, such as entropy [21] or
guesswork [12–14,16]. The entropyH(X) is the classical
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security measure of uncertainty that was originally defined
by Shannon in 1944. Shannon defined the entropy of a ran-
dom variableX with probability distributionpi as follows:

H(X) = −
∑

i

pi log2 pi (3)

Thus, entropy gives the average amount of information of a
discrete random variable. Entropy can also be seen as a mea-
sure giving the average number of guesses in an optimal bi-
nary search attack [9]. GuessworkW (X), on the other hand,
is a measure that gives the average number of guesses need-
ed to find the value of a random variableX in an optimal
brute force search attack, i.e., a linear search attack. When
performing an optimal brute force attack, the attacker is as-
sumed to have complete knowledge of the probability distri-
butionpi of X . Hence, before the guessing process starts, the
attacker arranges the distribution in a non-increasing proba-
bility order:

p1 ≥ p2 ≥ . . . ≥ pn (4)

From this, guesswork is formally defined as follows:

W (X) =
∑

i

ipi (5)

In this paper, the entropy up to the second-order of selectively
encrypted bitmap images will be investigated by generalizing
the work on entropy of selectively encrypted strings [10, 11]
through information neighborhoods that capture and model
information dependencies in several dimensions. The used
information neighborhoods are constructed from a general-
ization of Shannon’s work on the order of languages together
with the neighborhood concept from cellular automata theo-
ry [8], using theL1 metric [4]. Moreover, the construction
of information neighborhoods is generic, hence they can be
used for any application or idea where it is desired to capture
and investigate information dependencies.
The remainder of the paper is organized as follows. Sec-
tion II, describes the structure of bitmap images and presents
previous work on bitplane encryption of bitmap images. In-
formation neighborhoods that allow for information depen-
dencies in several dimension are constructed in Section III.
Section IV investigates the entropy of selectively encrypted
bitmap images, and Section V concludes the paper.

II. Bitmap Images

In this section, the structure of bitmap images is briefly de-
scribed together with a presentation of previous work on se-
lectively encrypted bitmap images.

A. Bitmap Structure

An uncompressedm× n bitmap image can be seen as anm

by n matrix I with pixels in the entries. A pixelIxy is the
smallest perceptive information unit or point in the image,
and its position in the image is given by the Cartesian(x, y)
coordinate. Moreover, the colors of the pixels are normally
represented by natural numbers and the amount of colors is
given by the number of bits per pixel, which is referred to as
the color depth,c. Hence,

0 ≤ Ixy < 2c (6)

with the often used convention that white is represented by
Ixy = 0 and black is represented byIxy = 2c− 1. Common
values ofc are 1, 4, 8, 16, 24, 32, 48 or 64 bits per pixel [3],
with values less than 8 bits used for grayscale images. Thus,
if c = 1, the color palette will contain only black and white
and, ifc = 8, the color palette will contain the 256 grayscale
colors. For higher values ofc the color palette contains oth-
er colors as well. In this paper, an 8 bitplanes512 × 512
pixels bitmap version of the famous Lena image is used; see
Figure 2 for an illustration.

Figure. 2: The famous Lena image.

To address unique bits in the image, a third coordinatez is
needed. Hence,Ixyz, 1 ≤ z ≤ c, gives bitz in the pix-
el at position(x, y). To shorten the notations, by setting
p = (x, y, z) a bit in the image can be writtenIp. Moreover,
the subset of bitsIz = I∗∗z , corresponding to all bits at posi-
tion z of the image, is referred to as bitplanez of the image.
Only encryption of whole bitplanes,E(Iz), will be further
investigated in this paper. Figure 3 illustrates the eight bit-
planes of an image. The points in the bitplanes correspond to

Figure. 3: Eight bitplanes of an image. The points in the
bitplanes correspond to single bits, and all bits with equal
(x, y) coordinates constitute a pixel.

single bits, and all bits with equal coordinates in the bitplanes
constitute a pixel. Note the arrows that are intended to show
dependencies between bits, both within the bitplanes and be-
tween the bitplanes. Dependencies are further discussed in
Section III.
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B. Previous Work on Bitplane Encryption

To reduce computational cost while still protecting image
perception during transmissions in mobile environments, a
selective bitplane encryption was proposed in [17]. In the pa-
per, the authors started by cumulatively encrypting the most
significant bitplanes of an eight bitplanes512 × 512 pixels
bitmap version of the Lena image, see Figure 2. The authors
claimed that encryption of only the most significant bitplane
gives a low level of perceptive protection, encryption of the
two most significant bitplanes gives enough protection if a
high degradation of the image is sufficient, and encryption
of the four most significant bitplanes gives a high level of
perceptive protection. Figure 4 illustrates the cumulative en-
cryption of the most significant bitplanes in the Lena image,
starting with encryption of the most significant bitplane in
the leftmost subfigure and ending with encryption of the four
most significant bitplanes in the rightmost subfigure. The

Figure. 4: Cumulative encryption of the most significant bit-
planes in the Lena image, starting with encryption of the
most significant bitplane in the leftmost subfigure and end-
ing with encryption of the four most significant bitplanes in
the rightmost subfigure.

result were not only verified by visual inspections, but al-
so from the assessment of a replacement attack and a recon-
struction attack. In the assessment attack encrypted bitplanes
were replaced by zero-bit bitplanes, and in the reconstruction
attack used that adjacent pixels are dependent and tends to be
identical.
In contrast to [17], the authors of [2] instead started by cumu-
latively encrypting the least significant bitplanes of the Lena
image. The reason for starting in the opposite direction is that
the less significant bitplanes are harder to perform a plain-
text attack on since they are more independent of each other
and more random in their internal bit-pattern structure. The
cumulative encryption of the least significant bitplanes inthe
Lena image is illustrated in Figure 5, starting with encryption
of the least significant bitplane in the leftmost upper subfig-
ure and ending with encryption of all the eight bitplanes in
the rightmost lower subfigure. Note that at least six bitplanes
are needed to be encrypted before the perception of the image
becomes somewhat degraded.
Besides bitmap image protection, selective encryption has
also been studied for MPEG data [22], H.264/AVC video
streams [20], JPEG2000 images [1, 15] and a wireless video
camera [6]. Moreover, a perception-based selective encryp-
tion scheme for telephone data compressed with the ITU-
T G.729 8 kb/s speech encoding standard was presented in
[19]. Selective encryption for the G.729 speech encoding s-
tandard has also been studied in [24].

Figure. 5: Cumulative encryption of least significant bit-
planes in the Lena image, starting with encryption of the least
significant bitplane in the leftmost upper subfigure and end-
ing with encryption of all the eight bitplanes in the rightmost
lower subfigure.

III. Information Neighborhoods

In this section, information neighborhoods that captures and
models information dependencies in several dimensions are
constructed. This is done by generalizing Shannon’s work on
order of languages and using the neighborhood concept from
cellular automata theory.

A. Generalizing Order of Languages

In [21], contiguous sequences of symbols in a language,
calledn-grams, were used to derive the probabilities of the
symbols in order to approximate texts in the corresponding
language. The approximation was carried out to different or-
ders as follows:

• In the zero-order approximation,ω = 0, symbols are
independent and uniformly distributed.

• In the first-order approximation,ω = 1, symbols are in-
dependent with a distribution according to the 1-grams
in the language.

• In the second-order approximation,ω = 2, symbols are
dependent on one preceding symbol with a distribution
according to the 2-grams in the language.

• In then-order approximation,ω = n, symbols are de-
pendent onn− 1 preceding symbols with a distribution
according to then-grams in the language.

The order gives the size of theω-grams used in the approxi-
mation and thus determines the set of depending symbols that
the approximation uses when calculating the probabilitiesof
the symbols. In this paper, the set of depending symbols will
be referred to as the neighborhood, based on the neighbor-
hood concept in cellular automata [8]. Moreover, symbols
in a language are not only depending on preceding symbols
as in the above described approximation model, but also on
succeeding symbols. Thus, the overall or total neighborhood
can be divided into the preceding neighborhood and the suc-
ceeding neighborhood.
The representation state of the information is usually consid-
ered one-dimensional when transferring or storing it. How-
ever, for better comprehension and higher abstraction, the
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representation state might be converted/transformed to an-
other representation state. For instance, the informationof a
bitmap image can be represented in two or three dimensions.
Two dimensions if the pixel state is considered, coordinates
of the pixels, and three dimensions if the bit state is consid-
ered, coordinates of the pixels and color depth. The con-
version between two representation states, possibly without
changing the dimension, is called lossless if it is invertible,
otherwise it is called lossy. In a lossy conversion, like MPEG
audio and video [23, 25], information is lost and the inter-
pretation of it becomes more or less degraded depending on
how forgiving the perception environment is. Furthermore,
encryption converts information lossless to a representation
state that cannot be interpreted by others than those who have
a secret that can be used to convert the information back to
the original and interpretable representation state.
When the information has a multi-dimensional representa-
tion state, such as for bitmap images, the order concept in
the language approximation model needs to be generalized.
This can be done by using an order vector,ω, where each
element gives the order in the corresponding dimension. For
instance,ω = (2, 1) indicates that the order is2 in the first
dimension and1 in the second dimension.

B. Basic Neighborhoods

Since aω-gram is a contiguous sequence ofω symbols, it
can be represented as an ordered one-dimensional finite in-
teger lattice[a, b] of sizeω. In such a structure, by referring
to symbols as points and assuming that a step only reaches
adjacent points in the lattice, the distance between two sym-
bols is given by the number of steps when walking on the
lattice between the two corresponding points. Hence, the n-
earest symbols is a walk of one step away, the second nearest
symbol is a walk of two steps away, and so on. Generaliz-
ing this to several dimensions naturally leads to the ordered
n-dimensional finite integer latticeIn with theL1 metric [4]
for calculating distances between points. TheL1 metric be-
tween two arbitraryn-dimensionally points,p andq, is given
by

||p− q||1 =

n
∑

i=1

|pi − qi| (7)

and it is often referred to as the Manhattan or Taxicab metric
[5]. In one dimension theL1 distance between two points
p = (a) andq = (b) becomes||p−q||1 = |a−b|. Note that
by not restricting the steps in the walk on the integer lattice
to adjacent points a lot of other metrics like the EuclideanL2

metric could be used.
In the above described language approximation model, the
point considered is always located at the right boundary point
of theω-gram or lattice. Hence,p = (b), giving the neigh-
borhood

Nω−1
ω (b) = [a, . . . , b− 1] (8)

consisting ofω − 1 preceding points and zero succeeding
points. However, symbols in a language not only depend on
preceding symbols but also on succeeding symbols. Thus, if
the considered point is instead arbitrary located in the lattice,

p = (x), then

N x−a
ω (x) = [a, . . . , x− 1] ∪ [x+ 1, . . . , b] (9)

consisting ofx − a preceding points andb − x succeeding
points. To shorten the lattice notation, the neighborhoods
will in the following be represented by the tuple

N i
ω(x) = (i, ω − i− 1) (10)

0 ≤ i < ω, where the first element gives the number of
preceding points and the second element gives the number
of succeeding points in the neighborhood. Note that there
are ω different neighborhoods, i.e., one neighborhood for
each position of the point in the lattice. For instance, if
ω = 3, the family of all possible neighborhoods isN3(x) =
{(0, 2), (1, 1), (2, 0)}. More generally, the family of all pos-
sible neighborhoods of orderω in one dimension is given by

Nω(x) = {N i
ω(x) | 0 ≤ i < ω} (11)

Figure 6 illustrates the different neighborhoods ofN1(x),
N2(x) andN3(x). A black square represents the point under
consideration and the white squares represent preceding or
succeeding points in the neighborhoods.

Figure. 6: The different neighborhoods ofN1(x),N2(x) and
N3(x). A black square represents the point under considera-
tion and the white squares represent preceding or succeeding
points in the neighborhoods.

From the families of one-dimensional neighborhoods, also
referred to as basic neighborhoods, new families of basic
neighborhoods in higher dimensions can be constructed as
follows

Nω(p) =
n

×
i=1

Nωi
(pi)

= {N i
ω
(p) | 0 ≤ i < ω} (12)

wherei = (i1, . . . , in) and

N i
ω
(p) =

n

×
j=1

N ij
ωj
(pj)

= (i,ω − i− 1) (13)

Figure 7 illustrates the construction of the two-dimensional
family N2,2(x, y) = N2(x) × N2(y). SinceN2(x) =
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Figure. 7: Construction of the four basic neighborhoods in
the two-dimensional familyN2,2(x, y) = N2(x)×N2(y).

{N 0
2 (x),N

1
2 (x)}, the resultingN2,2(x, y) family will con-

sist of the four axis neighborhoods

N i1,i2
2,2 (x, y) = N i1

2 (x) ×N i2
2 (y)

= ((i1, i2), (1 − i1, 1− i2)) (14)

Note that the elements inω need not be equal; hence, fami-
lies such asN2(x) × N1(y) can also be constructed. More-
over, Figure 8 illustrates all nine states ofN3,3(x, y) =

N3(x) × N3(y). Note that theN 1,1
3,3 (x, y) basic neighbor-

Figure. 8: The nine basic neighborhoods ofN3,3(x, y) =
N3(x)×N3(y).

hood is equal to the von Neumann neighborhood [8] of range
one in theL1 metric, which is also equal to the concept of

4-connected pixels in computer images. Construction of ba-
sic neighborhoods in higher dimensions follows, according
to (13), the same structure as in the two-dimensional exam-
ple.

C. Overall Neighborhoods

The basic neighborhoods contain only points that are locat-
ed on the axes. However, points located outside the axes
but within a specific distance determined byω can also be
considered to be depending points. Since a circle in theL1

metric has the shape of a convex polytope, a neighborhood
will in the rest of this paper be constructed by joining the
outermost points in the corresponding one-dimensional ba-
sic neighborhoods, thereby creating a convex polytope act-
ing as the overall neighborhood. Ann-polytope is a set or
geometric object inn dimensions with flat sides. Usually a
2-polytope is referred to as a polygon and a 3-polytope as
a polyhedron. Figure 9 shows the polygon, 2-polytope, for
the basic neighborhoodN 3,3

5,5 (x, y) is shown. Note the points

Figure. 9: The polygon, 2-polytope, for the basic neighbor-
hoodN 3,3

5,5 (x, y).

in the overall neighborhood that are not included in the ba-
sic neighborhoods. Moreover, if the basic neighborhoods are
symmetrically located around the considered point, the over-
all neighborhoods are actually circles in theL1 metric.
To mathematically describe the overall neighborhoods the
concept of convex hull [18] can be used. The convex hul-
l, Conv(S), of a setS of points is the intersection of al-
l convex sets containingS. Thus, Conv(S) forms the s-
mallest convex polytope that containsS. In Figure 9 the
overall neighborhood ofp can be written asD3,3

5,5(x, y) =

Conv(N 3,3
5,5 (x, y)) \ (x, y), and generally the overall neigh-

borhood can be written as

D i
ω
(p) = Conv(N i

ω
(p)) \ p (15)

where \ is the setminus operation. Note thatD0(p) =
D1(p) = ∅, hence, no neighborhoods exists in the zero-
and first order approximations. In one-dimension the over-
all neighborhoods are equal to the basic neighborhoods,
Dω(x) = Nω(x). Moreover, if the basic neighborhoods are
symmetrically located around the considered point, then the
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overall neighborhood can also be written as

Di
ω
(p) = {q 6= p | ||p− q||1 < ω} (16)

In two dimensions these neighborhoods are equal to the von
Neumann neighborhoods of range one in theL1 metric. Fig-
ure 10 illustrates the symmetrical neighborhoodD2,2

5,5(x, y).

Figure. 10: The overall neighborhoodD2,2
5,5(x, y).

IV. Entropy of Selectively Encrypted Bitmap
Images using Information Neighborhoods

This section uses the concept of information neighborhoods
introduced in the previous section and results from [11] to
investigate the entropy of selectively encrypted bitmap im-
ages. Only whole bitplanes of the image are assumed to be
encrypted, and a bitE(Ip) will be associated with a random
variableX as follows

E(Ip) =

{

Xp = Ip if bz = 0
Xp if bz = 1

(17)

Hence, the random variables have a sample spaceX =
{0, 1} and model the behavior of the bits inE(I) by be-
ing known if the corresponding bits are unencrypted and be-
ing unknown if the corresponding bits are encrypted. More-
over, to simplify the entropy calculations only states having
ωi = ω or zero will be considered. Thus, all considered di-
mensions will have the same family of basic neighborhoods.

A. Zero-order

In the zero-order case,ω = 0, the random variables are in-
dependent of each other and the probability distribution on
X is uniform. Hence, bits inside bitplanes and bits between
bitplanes are independent of each other. This implies that no
information about the image is known. Thus, the entropy of
E(Iz) attains its maximum value of

H0(E(Iz)) =
∑

p|z

H0(Xp)

= mn (18)

The last step in (18) comes from the observation that
H0(Xp) = log2(2) = 1 for the uniform distribution. For
the whole image, the entropy in the zero-order case becomes

H0(E(I)) =
∑

p

bzH0(Xp)

= mn
∑

z

bz (19)

where
∑

z bz gives the number of encrypted bitplanes in the
image. Note that if all bitplanes are encrypted,

∑

z bz = c,
thenH0(E(I)) = cmn. For the Lena image, which has
512 × 512 pixels, H0(E(Iz)) = 5122 andH0(E(I)) =
5122

∑

z bz.

B. First-order

In the first-order case,ω = 1, the random variables are still
independent of each other. However, the distribution onX is
now equal to the distribution of the bits in the bitplane under
consideration. Note that there will bec distributions, one for
each bitplane. For an encrypted bitplaneE(Iz) the entropy
becomes

H1(E(Iz)) =
∑

p|z

H1(Xp)

= mnH(Xp|z) (20)

where the last step in (20) comes from the fact that all bits in
bitplanez have equal entropyH(Xp|z). However,H(Xp|z)
changes for different bitplanes through the value ofz. For
the whole image, the entropy in the first-order case becomes

H1(E(I)) =
∑

p

bzH1(Xp)

= mn
∑

z

bzH(Xp|z) (21)

Figure 11 shows the 1-gram bit distributionp1(Ip|z) of each
bitplane of the Lena image. Note that bitplane five to eight
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Figure. 11: The 1-gram bit distributionp1(Ip|z) of the Lena
image.
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deviates more from the uniform distribution. This is as ex-
pected, since more significant bitplanes are supposed to cap-
ture more of the image structure. In Figure 12, the entropies
H0(E(Iz)) andH1(E(Iz)) are shown for each bitplane of
the Lena image. Note that the entropy decreases slowly for
more significant bitplanes except at the negative spike at bit-
plane seven, and thatH1(E(Iz) . H0(E(Iz)) = 5122.
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Figure. 12: The entropiesH0(E(Iz)) andH1(E(Iz)) of the
Lena image.

C. Second-order

In the second-order case,ωi = 2 or 0, the random variables
are dependent for each dimension on at most one succeed-
ing or preceding random variable. Hence, for a bitmap im-
age, the neighborhoods will at most contain three random
variables, two inside the corresponding bitplane, thex and
y coordinates, and one from an adjacent bitplane, thez co-
ordinate. See Figure3 for an illustration of this. Moreover,
by using the results in [11], the second-order entropy of an
encrypted bitplane when considering dependence of one pre-
ceding symbol in thex-axis becomes

H
1,0,0
2,0,0 (E(Iz)) =

∑

p|z

∏

x′<x

p(Xx′ |Xx′−1)H(Xx|Xx−1)

(22)

From the previously defined neighborhood notation, see Sec-
tion III, the entropy of an encrypted bitplane given in (22)
can, to allow for other combinations of dependencies inω,
be generalized as follows

H i
ω
(E(Iz)) =

∑

p|z

∏

p′∈Ri
ω
(p)

p(Xp′ |XDi
ω
(p′))H(Xp|XDi

ω
(p))

=
∑

p|z

p i
ω
(XRi

ω
(p))H

i
ω
(Xp) (23)

The regionRi
ω
(p) used in the product of (23) is a connected

encrypted rectangular subset of the imageI, and it is gener-
ated byp and the last encrypted points in the direction given
by the indexes. For instance, if the neighborhood consid-
ered isD1,1,0

2,2,0(p), then the generating points ofRi
ω
(p) arep

and the left lower point of the bitplane under consideration.
How to mathematically expressRi

ω
(p) will be an issue of

future research. Finally, the entropy for the whole image in
the second-order case becomes

H i
ω
(E(I)) =

∑

p

bzp
i
ω
(XRi

ω
(p))H

i
ω
(Xp) (24)

1) One-dimensional Dependence

In an one-dimensional dependence of the information,ωi =
2 for exactly one index value. Considering thex-axis, Fig-
ure 13 shows the conditional 2-gram probability distribution-
s, p1,0,02,0,0(Ip|z), of each bitplane of the image. Note again,
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Figure. 13: The conditional 2-gram probability distributions
p
1,0,0
2,0,0(Ip|z) of the Lena image.

that there is a larger deviation from the uniform distribution
for more significant bitplanes. The probability distributions
p0,2,0(Ip|z) have almost the same shape. The corresponding
entropiesH2,0,0(E(Iz)) andH0,2,0(E(Iz)) of the Lena im-
age are shown in Figure 14. Note again that the entropy de-
creases for more significant bitplanes, and that the entropies
are almost identical in each case regardingi. The reduction
in entropy between bitplane one and eight is69.9% in the
H2,0,0(E(Iz)) case and75.0% in the H0,2,0(E(Iz)) case.
Moreover, Figure 15 shows the conditional 2-gram proba-
bility distributionsp0,0,10,0,2(Ip|z) between the bitplanes of the
Lena image. Once again the considering distribution deviates
more from uniformness for more significant bitplanes. The
corresponding entropiesH0,0,2(E(Iz)|bD2(z)), of the Lena
image are shown in Figure 16 in the case when only one ad-
jacent bitplane is considered. IfbD2(z) = 0, the adjacent
bitplane is unencrypted. The reduction in entropy between
bitplane one and seven,i = (0, 0, 0), is 20.1%, and between
bitplane two and eight,i = (0, 0, 1), is 18.3%. Note that the
entropy decreases more when information within bitplanes
is used compared to when information between bitplanes is
used.
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Figure. 14: EntropiesH2,0,0(E(Iz)) andH0,2,0(E(Iz)) of
the Lena image.
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Figure. 15: The conditional 2-gram distributions between
the bitplanesp0,0,10,0,2(Ip|z) of the Lena image.

2) Two-dimensional Dependence

In a two-dimensional dependence of the information,ωi = 2
for exactly two index values. The bitplanes of the image is
one example of such two-dimensional dependence where the
x and y index is considered. Figure 17 shows the condi-
tional 2-gram distributionsp1,1,02,2,0(Ip|z) of each bitplane of
the Lena image. Moreover, in this case the two-dimensional
product in (23) is harder to calculate than the correspond-
ing one-dimensional product. The two-dimensional prod-
uct will also be a focus of future research. However, the
product can be calculated by assuming a steady state. Us-
ing this, the entropiesH1,1,0

2,2,0 (E(Iz)) andH1,0,0
2,2,0 (E(Iz)) of

the Lena image are calculated and shown in Figure 18. The
reduction in entropy between bitplane one and eight is82.9%
wheni = (1, 1, 0) and80.6% wheni = (1, 0, 0). The oth-
er two entropies that are not plotted areH0,0,0

2,2,0 (E(Iz)) ≈
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Figure. 16: EntropiesH0,0,2(E(Iz)|bD2(z)) of the Lena im-
age.
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Figure. 17: The conditional 2-gram distributions
p
1,1,0
2,2,0(Ip|z) of the Lena image.

H
1,1,0
2,2,0 (E(Iz)) andH0,1,0

2,2,0 (E(Iz)) ≈ H
1,0,0
2,2,0 (E(Iz)).

Other two-dimensional entropies of the bitplanes of the Lena
image areH2,0,2(E(Iz)|bD2(z)) andH0,2,2(E(Iz)|bD2(z)).
If bD2(z) = 0 thenR(p) in (23) will be one dimension-
al in the x or y direction. If insteadbD2(z) = 1 then
R(p) will still be two dimensional, but only consisting of
two adjacent rows of the bitplanes. In Figure 19, the en-
tropiesH1,0,1

2,0,2 (E(Iz)|bz−1) andH0,1,1
0,2,2 (E(Iz)|bz−1) of the

Lena image is shown. Ifbz−1 = 0 the entropy reduction are
84.5% and89.5%, respectively, and ifbz−1 = 1 it is 66.4%
and70.7%, respectively.

3) Three-dimensional Dependence

In a three-dimensional dependence of the information,ω =
2, the product in (23) is even harder to calculate. Fig-
ure 20 shows the conditional 2-gram probability distributions
p12(Ip|z) of the Lena image. Due to the large amount of plots
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Figure. 18: The entropies H
1,1,0
2,2,0 (E(Iz)) and

H
1,0,0
2,2,0 (E(Iz)) of the Lena image.
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Figure. 19: The entropies H
1,0,1
2,0,2 (E(Iz)|bz−1) and

H
0,1,1
0,2,2 (E(Iz)|bz−1) of the Lena image.

in the graph, a legend is not inserted. However, bits of equal
values tend to cluster, and this property increases for higher
bitplanes. The highest probabilities, which occurs with value
one, arep12(1|110) andp12(0|001). Moreover, by assuming
a steady state, the entropiesH1,1,1

2,2,2 (E(Iz)|bz−1 = 1) and

H
1,0,1
2,2,2 (E(Iz)|bz−1 = 1) of the Lena image are calculated

and shown in Figure 21. The entropy reduction between bit-
plane two and eight is90.7% wheni = (1, 1, 1) and89.1%
wheni = (1, 0, 1). Moreover, statei = (0, 0, 1) has an en-
tropy almost equal to that of statei = (1, 1, 1), and state
i = (0, 1, 1) as that of statei = (1, 0, 1).

V. Conclusions and Future Work

This paper investigated the entropy until the second-orderof
selectively encrypted bitmap images. To capture informa-
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Figure. 20: The conditional 2-gram distributionsp12(Ip|z) of
the Lena image.
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Figure. 21: The entropiesH1,1,1
2,2,2 (E(Iz)|bz−1 = 1) and

H
1,0,1
2,2,2 (E(Iz)|bz−1 = 1) of the Lena image.

tion dependencies in several dimensions when performing
the entropy calculations, information neighborhoods were
constructed by extending Shannon’s work on the order of
languages together with ideas from the neighborhood con-
cept in cellular automata theory. As expected, the entropy in
the Lena bitmap image seems to decrease with more signif-
icant bitplanes being encrypted and when larger information
neighborhoods are used.
To further investigate the entropy of selectively encrypted
bitmap images, the total entropy, not only for single bit-
planes, and higher order information neighborhoods, will be
considered and applied to other bitmap images as well. An-
other issue would be to investigate and correlate entropy and
the perceptive signal to noise ratio measure, which was used
in [2] to investigate the perception of selectively encrypted
bitmap images. The product in (23) over the regionRi

ω
(p)

will be a further focus of future research.
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