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Abstract: where 1" is the concatenation operator. From a bit vector,
Selective encryption is a concept in which the main goal is b, that controls which parts of the information to encrypt,
to reduce computational cost while providing confidentialty  the selectively encrypted informatiof(7), is constructed
by encrypting only chosen parts of the information to be as follows:
protected. Previous work on selective encryption has maigl

been aimed towards multimedia applications in order to redwce E(I) = | {
the overhead induced by encryption while still making the i=0
information perceptually secure to a desired protection Igel.
This was accomplished by utilizing the fact that different parts

of the information have different impacts on our perception
senses, i.e., eyes and ears. How computationally secure the
information is when using selective encryption has however
only briefly been mentioned or rudimentarily analyzed. In
this paper, we therefore investigate the security implicabns Ed)=|0 1 121 3 4 |5] 6 7 18
of selective encryption by generalizing the work on entropy
of selectively encrypted strings to several dimensions and

applying it to bitmap images. The generalization is done by ) ) ) o
constructing information neighborhoods from the order of ~ Figure. 1. A selectively encrypted information consisting of
languages concept and cellular automata theory to capturerad V€ encrypted parts (in gray) and four unencrypted parts (in

model information dependencies in several dimensions. white).

I; if bz mod |b| = 0
B(L) ifbmap=1 2

Figure 1 illustrates selectively encrypted informationsist-
ing of five encrypted parts (in gray) and four unencrypted
parts (in white).

Keywords. computer security, security measures, selective encryygi_revious work on §elec.tive er!cryption has mainly_been
tion, entropy, confidentiality, bitmap images, cellulatauata. aimed towards multimedia applications with a short infor-

mation lifetime, such as TV or radio broadcasts of events,
in order to reduce the overhead induced by encryption while
still making the information perceptually secure. This was

When information is protected, a computational cost is imaccomplished by utilizing the fact that different parts loé t
posed on the computing environment. For small computaformation have different impacts on our perception sens-
ing devices with restricted resources, such as mobile ghor®s, i.e., our eyes and ears. The perception impact has also
or sensor network devices, the security mechanisms that &@en used in lossy compression of information, like MP3 or
used can put a significant extra burden on performance andtEG compression, to keep more sensitive parts of the infor-
energy consumption. The concept of selective encryptionation more intact and thereby not destroying the perceptio
may be used to reduce computational cost when providifigyond a desirable threshold. However, the security iraplic
confidentiality, which provides confidentiality by encryygg  tions of how computationally secure the information is when
only chosen parts of the information. Selective encryptioHsing selective encryption have only briefly been mentioned
can also be used to trade confidentiality against computatioor rudimentarily analyzed, e.g., in [17].

al cost by altering the distribution of encrypted parts. @e When measuring how computationally secure selectively en-
thors in [7] presented a generic selective encryption moddirypted information is, it must be taken into consideration
In the proposed model, the informatiah,is divided inton, ~ that the unencrypted parts may, due to information depen-

[. Introduction

equally sized partd,, 0 < i < n. Hence, dencies, leak information to an attacker about the encdypte
- parts. This extra information must be considered and includ
I= | I (1) ed in the used security measures, such as entropy [21] or

i=0 guesswork [12-14,16]. The entrogy(X) is the classical
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security measure of uncertainty that was originally definedith the often used convention that white is represented by
by Shannon in 1944. Shannon defined the entropy of a rai;, = 0 and black is represented By, = 2¢ — 1. Common
dom variableX with probability distributiorp; as follows:  values ofc are 1, 4, 8, 16, 24, 32, 48 or 64 bits per pixel [3],
with values less than 8 bits used for grayscale images. Thus,
H(X) =~ Zpi log, pi () if ¢ = 1, the color palette will contain only black and white
‘ and, ifc = 8, the color palette will contain the 256 grayscale
Thus, entropy gives the average amount of information of golors. For higher values efthe color palette contains oth-
discrete random variable. Entropy can also be seen as a megcolors as well. In this paper, an 8 bitplarid® x 512
sure giving the average number of guesses in an optimal ixels bitmap version of the famous Lena image is used; see
nary search attack [9]. Guesswdik(X ), on the other hand, Figure 2 for an illustration.
is a measure that gives the average number of guesses need-
ed to find the value of a random variahle in an optimal |" .
brute force search attack, i.e., a linear search attack.nwhe
performing an optimal brute force attack, the attacker is as
sumed to have complete knowledge of the probability distri-
butionp; of X. Hence, before the guessing process starts, the
attacker arranges the distribution in a non-increasinpgro
bility order:

P1Z2P22 ... 2 Dn (4)
From this, guesswork is formally defined as follows:
W(X) =" ip; (5)

In this paper, the entropy up to the second-order of seldgtiv
encrypted bitmap images will be investigated by generadizi
the work on entropy of selectively encrypted strings [1Q, 11
through information neighborhoods that capture and model
information dependencies in several dimensions. The used
information neighborhoods are constructed from a general-
ization of Shannon’s work on the order of languages together Figure. 2: The famous Lena image.

with the neighborhood concept from cellular automata theo-

ry [8], using theL! metric [4]. Moreover, the construction To address unique bits in the image, a third coordinaite

of information neighborhoods is generic, hence they can Beeded. HenceZ,,., 1 < z < ¢, gives bitz in the pix-
used for any application or idea where it is desired to captug! at position(z,y). To shorten the notations, by setting
and investigate information dependencies. p = (,y,2) abitin the image can be writtef},. Moreover,

The remainder of the paper is organized as follows. Sethe subset of bit§. = Z...., corresponding to all bits at posi-
tion I, describes the structure of bitmap images and pisseriion z of the image, is referred to as bitplanef the image.
previous work on bitplane encryption of bitmap images. InOnly encryption of whole bitplanesy(Z.), will be further
formation neighborhoods that allow for information depeninvestigated in this paper. Figure 3 illustrates the eight b
dencies in several dimension are constructed in Section Iplanes of an image. The points in the bitplanes correspond to
Section IV investigates the entropy of selectively encegpt

bitmap images, and Section V concludes the paper.

II. Bitmap Images

In this section, the structure of bitmap images is briefly de-
scribed together with a presentation of previous work on se-
lectively encrypted bitmap images.

A. Bitmap Structure

An uncompresseth x n bitmap image can be seen asran

by . matrix Z with pixels in the entries. A pixel,, is the Figure. 3: Eight bitplanes of an image. The points in the
smallest perceptive information unit or point in the imagepitplanes correspond to single bits, and all bits with equal

and its position in the image is given by the Cartesiary)  (z,y) coordinates constitute a pixel.
coordinate. Moreover, the colors of the pixels are normally

represented by natural numbers and the amount of colorssi§gle bits, and all bits with equal coordinates in the litygls

given by the number of bits per pixeL which is referred to agonstitute a pixel. Note the arrows that are intended to show
the color depthg. Hence, dependencies between bits, both within the bitplanes and be

. tween the bitplanes. Dependencies are further discussed in
0<Zyy <2 (6)  section Il
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B. PreviousWork on Bitplane Encryption

To reduce computational cost while still protecting image
perception during transmissions in mobile environments,
selective bitplane encryption was proposedin [17]. Inthe p
per, the authors started by cumulatively encrypting thetmospg
significant bitplanes of an eight bitplang$2 x 512 pixels
bitmap version of the Lena image, see Figure 2. The author§ &

claimed that encryption of only the most significant bitgdan
gives a low level of perceptive protection, encryption af th
two most significant bitplanes gives enough protection if a

high degradation of the image is sufficient, and encryption ) ) o )
of the four most significant bitplanes gives a high level of igure. 5: Cumulative encryption of least significant bit-
perceptive protection. Figure 4 illustrates the cumuéagm-  Planes in the Lenaimage, starting with encryption of thetlea

cryption of the most significant bitplanes in the Lena imagesignificant bitplane in the leftmost upper subfigure and end-
starting with encryption of the most significant bitplane iHnd With encryption of all the eight bitplanes in the rightsto
the leftmost subfigure and ending with encryption of the fouPWer subfigure.

most significant bitplanes in the rightmost subfigure. The

lll. Information Neighborhoods

In this section, information neighborhoods that capturest a
models information dependencies in several dimensions are
constructed. This is done by generalizing Shannon’s work on
order of languages and using the neighborhood concept from
cellular automata theory.

A. Generalizing Order of Languages

Figure. 4: Cumulative encryption of the most significant blt-In [21], contiguous sequences of symbols in a language,

planes in the Lena image, starting with encryption of th(%alledn—grams, were used to derive the probabilities of the

most significant bitplane in the leftmost subfigure and en symbols in order to approximate texts in the corresponding

language. The approximation was carried out to different or
ders as follows:

ing with encryption of the four most significant bitplanes in
the rightmost subfigure.

- . . . « In the zero-order approximation, = 0, symbols are
result were not only verified by visual inspections, but al- independent and uniformly distributed.

so from the assessment of a replacement attack and a recon-
struction attack. In the assessment attack encryptedbiggl o In the first-order approximation; = 1, symbols are in-

were replaced by zero-bit bitplanes, and in the reconstnuct dependent with a distribution according to the 1-grams
attack used that adjacent pixels are dependent and tendsto b in the language.
identical.

« In the second-order approximatian= 2, symbols are
dependent on one preceding symbol with a distribution
according to the 2-grams in the language.

In contrastto [17], the authors of [2] instead started by gum
latively encrypting the least significant bitplanes of trenh
image. The reason for starting in the opposite directiomas t
the less signifigant bitplanes are h_arder to perform a plain- | |1 then-order approximationy = n, symbols are de-
text attack on since they_a_re more |r_1dependent of each other pendent om — 1 preceding symbols with a distribution
and more random in their internal plt—p:_ittern s_tructurefe Th according to thei-grams in the language.

cumulative encryption of the least significant bitplanethim

Lenaimage is illustrated in Figure 5, starting with encigpt The order gives the size of thegrams used in the approxi-

of the least significant bitplane in the leftmost upper subfignation and thus determines the set of depending symbols that
ure and ending with encryption of all the eight bitplanes irthe approximation uses when calculating the probabildfes
the rightmost lower subfigure. Note that at least six bitptan the symbols. In this paper, the set of depending symbols will
are needed to be encrypted before the perception of the imauge referred to as the neighborhood, based on the neighbor-
becomes somewhat degraded. hood concept in cellular automata [8]. Moreover, symbols
Besides bitmap image protection, selective encryption has a language are not only depending on preceding symbols
also been studied for MPEG data [22], H.264/AVC videas in the above described approximation model, but also on
streams [20], JPEG2000 images [1, 15] and a wireless vidsacceeding symbols. Thus, the overall or total neighbathoo
camera [6]. Moreover, a perception-based selective encrygan be divided into the preceding neighborhood and the suc-
tion scheme for telephone data compressed with the ITldeeding neighborhood.

T G.729 8 kb/s speech encoding standard was presentedTime representation state of the information is usually icbns
[19]. Selective encryption for the G.729 speech encoding &red one-dimensional when transferring or storing it. How-
tandard has also been studied in [24]. ever, for better comprehension and higher abstraction, the
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representation state might be converted/transformed 1o gmn = (), then

other representation state. For instance, the informatien

bitmap image can be represented in two or three dimensions. NE=%z)=a,...,x —1JU[z+1,...,b| 9)

Two dimensions if the pixel state is considered, coordmate

of the pixels, and three dimensions if the bit state is consigonsisting ofz — a preceding points antl — = succeeding
ered, coordinates of the pixels and color depth. The copoints. To shorten the lattice notation, the neighborhoods
version between two representation states, possibly withowill in the following be represented by the tuple

changing the dimension, is called lossless if it is invéetib ,

otherwise it is called lossy. In a lossy conversion, like NGPE Ni(@) = (f,w —i—1) (10)
audio and video [23, 25], information is lost and the inter- ] )

pretation of it becomes more or less degraded depending 8n< ¢ < w, where the first element gives the number of
how forgiving the perception environment is. Furthermorg?reéceding points and the second element gives the number
encryption converts information lossless to a represiemtat ©f succeeding points in the neighborhood. Note that there
state that cannot be interpreted by others than those wheo h&f€ « different neighborhoods, i.e., one neighborhood for
a secret that can be used to convert the information back §§¢h Position of the point in the lattice. For instance, if
the original and interpretable representation state. w = 3, the family of all possible neighborhoodsi% () =
When the information has a multi-dimensional representa{0; 2), (1, 1), (2,0)}. More generally, the family of all pos-
tion state, such as for bitmap images, the order concept $P€ neighborhoods of orderin one dimension is given by

the language approximation model needs to be generalized. i .
This can be done by using an order vector,where each No(z) = {N5(2) [0 < i < w} (11)

element gives the order in the corresponding dimension. For . . .
instancew = (2, 1) indicates that the order &in the first Blgure 6 illustrates the different neighborhoods/f(x),

dimension and. in the second dimension. J\/Q(:c_) andj_\/g(a:). A black square represents the point un_der
consideration and the white squares represent preceding or

_ ) succeeding points in the neighborhoods.
B. Basic Neighborhoods

Since aw-gram is a contiguous sequencewfymbols, it N, (x) .
can be represented as an ordered one-dimensional finite in-

teger latticela, b] of sizew. In such a structure, by referring Nix)
to symbols as points and assuming that a step only reaches
adjacent points in the lattice, the distance between two sym ., x
. ' : 2(x)
bols is given by the number of steps when walking on the .j E.
lattice between the two corresponding points. Hence, the n- Nix) NiX)

earest symbols is a walk of one step away, the second nearest

symbol is a walk of two steps away, and so on. Generaliz- ,,

) . . . ®)

ing this to several dimensions naturally leads to the oxlere =’ ) .:\j E-j D:.
n-dimensional finite integer latticE* with the L' metric [4] N3 N N

for calculating distances between points. Themetric be-
tween two arbitrary:-dimensionally pointsp andq, is given

by Figure. 6: The different neighborhoods &f; (z), N> (z) and
n N3(z). A black square represents the point under considera-
Ilp—dll1 = Z Ipi — qi (7) tion and the white squares represent preceding or sucgeedin
i=1 points in the neighborhoods.

and it is often referred to as the Manhattan or Taxicab metrig.om the families of one-dimensional neighborhoods, also

. . e .
[5]. In one dimension the." distance between two points referred to as basic neighborhoods, new families of basic

p = (a) andq = (b) becomes|p —q||s = |a—b|. Notethat ejghhorhoods in higher dimensions can be constructed as
by not restricting the steps in the walk on the integer lattict)ows

to adjacent points a lot of other metrics like the Euclidéan

metric could be used. No(p) = % No (pi)
In the above described language approximation model, the =1
point considered is always located at the right boundamtpoi ={Ni(p)|o<i<w} (12)
of thew-gram or lattice. Hencegy = (b), giving the neigh-
borhood wherei = (iy,...,4,)and
NZ7Hb) = [a, ..., b= 1] (8) Ni(p) = X N (p))
j=1
consisting ofw — 1 preceding points and zero succeeding =({jw—i—-1) (13)

points. However, symbols in a language not only depend on
preceding symbols but also on succeeding symbols. ThusFigure 7 illustrates the construction of the two-dimenaion
the considered point is instead arbitrary located in theelat  family Mo o(z,y) = Nao(z) x Na(y). Since Na(z) =
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4-connected pixels in computer images. Construction of ba-

sic neighborhoods in higher dimensions follows, according
Af" to (13), the same structure as in the two-dimensional exam-
®)
N N ple.
C. Overall Neighborhoods
5 Hj The basic neighborhoods contain only points that are locat-
N3k Iz N ed on the axes. However, points located outside the axes
:0) 22(%) but within a specific distance determined dycan also be
considered to be depending points. Since a circle inlthe
metric has the shape of a convex polytope, a neighborhood
N will in the rest of this paper be constructed by joining the
2(x) Ny Ny o_utern_mst points in the correspor_lding one-dimensional ba-
sic neighborhoods, thereby creating a convex polytope act-
ing as the overall neighborhood. Anrpolytope is a set or
geometric object im dimensions with flat sides. Usually a
N ') 2-polytope is referred to as a polygon and a 3-polytope as
Ny Ny a polyhedron. Figure 9 shows the polygon, 2-polytope, for

the basic neighborhodﬂ?ﬁf (z,y) is shown. Note the points

Figure. 7: Construction of the four basic neighborhoods in
the two-dimensional familps o(z, y) = Na(z) x Na(y). x
{NY(x), N3 (z)}, the resultingNs 2 (z,y) family will con-
sist of the four axis neighborhoods

257 (@ y) = Ny (@) x N3 (y)
= ((i1,12), (1 — i1,1 — i2)) (14)
Note that the elements 2 need not be equal; hence, fami-

lies such asVa(z) x Ni(y) can also be constructed. More-
over, Figure 8 illustrates all nine states &f 3(x,y) =

N3(z) x N3(y). Note that theN; (z,y) basic neighbor- > x

Niy) Ny N3y

Figure. 9: The polygon, 2-polytope, for the basic neighbor-

N hOOdN;?(I, ).
in the overall neighborhood that are not included in the ba-
sic neighborhoods. Moreover, if the basic neighborhooés ar
symmetrically located around the considered point, the-ove
all neighborhoods are actually circles in the metric.

N ) To mathematically describe the overall neighborhoods the

’ concept of convex hull [18] can be used. The convex hul-

[, Con«S), of a setS of points is the intersection of al-
| convex sets containing. Thus, ConyS) forms the s-
mallest convex polytope that contaigs In Figure 9 the
overall ne|ghb0rhood op can be written a§)5 Sx,y) =

Nk Conv\V; 5 ®(x,9)) \ (x,y), and generally the overall neigh-
borhood can be written as
D, (p) = Conu N (p)) \ P (15)
where\ is the setminus operation. Note thBy(p) =
Figure. 8 The nine basic neighborhoods &f; 3(z,y) = D1(p) = 0, hence, no neighborhoods exists in the zero-
Ns(z) x Ns(y). and first order approximations. In one-dimension the over-

all neighborhoods are equal to the basic neighborhoods,
hood is equal to the von Neumann neighborhood [8] of rangB,, (z) = AN, (x). Moreover, if the basic neighborhoods are
one in theL; metric, which is also equal to the concept ofsymmetrically located around the considered point, then th
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overall neighborhood can also be written as The last step in (18) comes from the observation that
. Ho(Xp) = log2(2) = 1 for the uniform distribution. For
D,(p)={a#p|lp—dli <w} (16)  the whole image, the entropy in the zero-order case becomes
In two dimen;ions these neighborhood_s are equql to _the von Ho(E(T)) = Z b, Ho(Xp)
Neumann neighborhoods of range one in fhemetric. Fig- S

ure 10 illustrates the symmetrical neighborhdd? (z, v).
Y g @5( Y) Zngbz (19)

where) b, gives the number of encrypted bitplanes in the
image. Note that if all bitplanes are encryptéd, b. = c,
then Ho(E(Z)) = cmn. For the Lena image, which has
512 x 512 pixels, Ho(E(Z,)) = 5122 and Ho(E(Z)) =
51223 b,.

|

B. First-order

In the first-order casey = 1, the random variables are still
independent of each other. However, the distributioritois
now equal to the distribution of the bits in the bitplane unde
consideration. Note that there will lzedistributions, one for
each bitplane. For an encrypted bitplafi€Z, ) the entropy
becomes

Hy(E(Z.)) =Y Hi(Xp)
Figure. 10: The overall neighborhoo®; ? (z, y). plz
= mnH(Xp|.) (20)

) ) where the last step in (20) comes from the fact that all bits in
IV. Entropy Of. SeleCt'Vely_ Encrypted Bitmap  pjtplane: have equal entropyl (X p|.). However,H (Xp,.)
Images using Information Neighborhoods  changes for different bitplanes through the value: ofFor

. . . . . e whole image, the entropy in the first-order case becomes
This section uses the concept of information nelghborhoog; g Py

introduced in the previous section and results from [11] to _

investigate the entropy of selectively encrypted bitmap im M (E(1)) = Z b-H1(Xp)

ages. Only whole bitplanes of the image are assumed to be P

encrypted, and a biE(Z, ) will be associated with a random =mn Z b H(Xp)») (21)
variableX as follows z

Xp=1I, ifb.=0 Figure 11 shows the 1-gram bit distributipp(Zy, ) of each
E(Zp) = { X, if b, =1 (17) bitplane of the Lena image. Note that bitplane five to eight
Hence, the random variables have a sample spéce- 058

{0,1} and model the behavior of the bits i(Z) by be-
ing known if the corresponding bits are unencrypted and b
ing unknown if the corresponding bits are encrypted. More
over, to simplify the entropy calculations only states hgvi o
w; = w or zero will be considered. Thus, all considered di
mensions will have the same family of basic neighborhood

0.56

0.52

Probability
1)
B

A. Zero-order

o
IS
©

In the zero-order casey = 0, the random variables are in-
dependent of each other and the probability distribution 0 o4s
X is uniform. Hence, bits inside bitplanes and bits betwee
bitplanes are independent of each other. This implies that1 o4
information about the image is known. Thus, the entropy ¢

E(T.) attains its maximum value of 042y 2 s 7 5 6 7 s

Bitplane (z)

Ho(E(Z.)) = > Ho(Xp)
plz Figure. 11 The 1-gram bit distributiop (Zp,.) of the Lena
=mn (18) image.
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deviates more from the uniform distribution. This is as exand the left lower point of the bitplane under consideration
pected, since more significant bitplanes are supposed to catow to mathematically expresg: (p) will be an issue of
ture more of the image structure. In Figure 12, the entropidsture research. Finally, the entropy for the whole image in
Ho(E(Z,)) andH1(FE(Z,)) are shown for each bitplane of the second-order case becomes

the Lena image. Note that the entropy decreases slowly for

more significant bitplanes except at the negative spiketat bi i . i ' i

plane seven, and that; (E(Z,) < Ho(E(Z,)) = 5122 Ho(E(T) = ; bepo Xy ) Ho(Xp)  (24)

x 10°

2.63

1) One-dimensional Dependence

In an one-dimensional dependence of the informatign-
2 for exactly one index value. Considering theaxis, Fig-
ure 13 shows the conditional 2-gram probability distriboti
S, p30'0(Zp|-), Of each bitplane of the image. Note again,

2611

Entropy
N
o
T

T P00

= ,0,0,
08 ——*— Py 00(I0)

e P

2581 | Hy(E(1))
H,(EQ,)

1,0,0
6 Pyt

257 Il Il Il Il Il Il
1 4 5
Bitplane (z)

Probability
o
a

0.4

Figure. 12 The entropiedio(E(Z,)) andH, (F(Z.)) of the
Lena image. 03

0.2

C. Second-order 01

il
In the second-order case; = 2 or 0, the random variables  o; ; s ; . . ; s
are dependent for each dimension on at most one succe... Bitplane (2)

ing or preceding random variable. Hence, for a bitmap im-

age, the neighborhoods will at most contain three random N S
variables, two inside the corresponding bitplane, thend F{gouore. 13 The condmo_nal 2-gram probability distributions
y coordinates, and one from an adjacent bitplanesthe-  P2.0.0(Zp|-) Of the Lena image.

ordinate. See Figurg for an illustration of this. Moreover,

by using the results in [11], the second-order entropy of &a¢ there is a larger deviation from the uniform distribati
encrypted bitplane when considering dependence of one pigi more significant bitplanes. The probability distritmrts
ceding symbol in the-axis becomes po,2,0(Zp).) have almost the same shape. The corresponding
1,0,0 _ entropiesHs o,0(F(Z,)) andHp 20(E(Z,)) of the Lena im-
Hy 50 (E(Z,)) = Z H P(Xar [ Xy 1) H (X | Xp1) age are shown(in(Fig)are 14. Noté a(gai)rz that the entropy de-
plz '<e o) Creases for more significant bitplanes, and that the ergsopi
(22) are almost identical in each case regardinghe reduction
From the previously defined neighborhood notation, see Sdo-entropy between bitplane one and eight%9% in the
tion 1ll, the entropy of an encrypted bitplane given in (22)H2,0,0(E(Z.)) case and’5.0% in the Hy 2 o(£(Z.)) case.
can, to allow for other combinations of dependenciessjn Moreover, Figure 15 shows the conditional 2-gram proba-
be generalized as follows bility distributionspy’q’(Zy|-) between the bitplanes of the
. Lenaimage. Once again the considering distribution desiat
H,(E(Z.)) = Z H p(Xp [ Xpi (p) H(Xp|Xpi (p))  more from uniformness for more significant bitplanes. The

plz PERL (P) corresponding entropiel( o 2(E(Z.)|bp,(-)), of the Lena
_ ix., Hi(X 23) image are shown in Figure 16 in the case when only one ad-
pzlsz“’( rL () (Xp) 23) jacent bitplane is considered. 8f,.., = 0, the adjacent

bitplane is unencrypted. The reduction in entropy between
The regionR}, (p) used in the product of (23) is a connecteditplane one and seveh= (0,0, 0), is 20.1%, and between
encrypted rectangular subset of the imdgend it is gener- bitplane two and eight, = (0,0, 1), is 18.3%. Note that the
ated byp and the last encrypted points in the direction giverntropy decreases more when information within bitplanes
by the indexes. For instance, if the neighborhood consids used compared to when information between bitplanes is
ered isDyy'o(p), then the generating points &, (p) arep  used.
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T
—o—Hy,0E()
——H, 5 oE())
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0,0,1,
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Figure. 14 EntropiesH»,0,0(E(Z.)) andHy2,0(E(Z.)) of  Figure. 16: EntropiesHo o,2(E(Z.)|bp, =) of the Lenaim-
the Lena image. age.
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Figure. 15 The conditional 2-gram distributions betweenF{%lfore' L The ~ conditional - 2-gram _ distributions

the b|tplane3)0 0. '5(Zp|.) Of the Lena image. P220(Zp|-) Of the Lena image.

o H,'50(E(Z.)) andHy'y'0 (E(Z.)) ~ Hy'y (E(Z.)).
2) Two-dimensional Dependence Other two-dimensional entropies of the bitplanes of thesLen

. . . . image areHs o 2(E(Z.)|bp, (=) and Ho 2 2(E(Z.)|bp,(2))-
In a two-dimensional dependence of the informations= 2 If bpy) = 0 thenR(p) in (23) will be one dimension-

for exactly two index values. The bitplanes of the image i |
one example of such two-dimensional dependence where l%?

d p idered. Fi 17 sh h i ) will still be two dimensional, but only consisting of
z andy index is consi el’(31’170 igure 17 shows the con 'two adjacent rows of the bitplanes. In Figure 19, the en-

tional 2-gram distributiong,’;'5(Zy,).) of each bitplane of 1,0,1 011 p
z o iesH. b,—1) and H, b, of the
the Lena image. Moreover, in this case the two- d|menS|on§ PieSHy o (B(L:)[b-—1) 022 (B(L2)[b=-1)

in the = or y direction. If insteadbp,;y) = 1 then

na image is shown. K,_; = 0 the entropy reduction are
product in (23) is harder to calculate than the correspon 1.5% andg9.5%, respectively, and ib, 1 — 1 it is 66.4%
ing one-dimensional product. The two-dimensional prod 2nd70.7% respe’ctlvely ' =t

uct will also be a focus of future research. However, the
product can be calculated by assuming a steady state.
ing this, the entropiesl, ') (E(Z.)) and Hyy'g (E(Z.)) of
the Lena image are calculated and shown in Figure 18. Tl a three-dimensional dependence of the informatior;

reduction in entropy between bitplane one and eigd2i8% 2, the product in (23) is even harder to calculate. Fig-
wheni = (1,1,0) and80.6% wheni = (1,0,0). The oth- ure 20 shows the conditional 2-gram probability distribos

er two entropies that are not plotted aﬁé{’g’g(E(Iz)) ~ p3(Z,).) of the Lenaimage. Due to the large amount of plots

Lé? Three-dimensional Dependence
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Figure. 20: The conditional 2-gram distributiong (Z, . ) of

the Lena image.
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Figure. 21: The entropiesil,’y’, (E(Z.)|b.-1 = 1) and
Figure. 19  The entropies Hy)’, (E(Z.)[b-—1) and Hy 93 (E(Z.)[b._1 = 1) of the Lenaimage.

HY'y'5 (E(Z.)[b.-1) of the Lena image.

. . . . tion dependencies in several dimensions when performin
in the graph, a legend is not inserted. However, bits of equa? P P g

values tend to cluster, and this property increases fordnigh e entropy calculations, information neighborhoods were
i . ' > property . Meonstructed by extending Shannon’s work on the order of
bitplanes. The highest probabilities, which occurs witlhuea

one, arepk(1[110) andp(0[001). Moreover, by assuming languages together with ideas from the neighborhood con-

1101 a cept in cellular automata theory. As expected, the entropy i
a steady state, the entrop|é§,272(E(Iz)|bz_1 = 1) and the Lena bitmap image seems to decrease with more signif-

Hy'y'5 (E(Z.)|b.—1 = 1) of the Lena image are calculatedicant bitplanes being encrypted and when larger informatio
and shown in Figure 21. The entropy reduction between biﬁ'eighborhoods are used.

plane two and eight i80.7% wheni = (1,1,1) and89.1% g further investigate the entropy of selectively encryipte
wheni = (1,0,1). Moreover, staté = (0,0,1) has an en- pitmap images, the total entropy, not only for single bit-
tropy almost equal to that of state= (1,1,1), and state pjanes, and higher order information neighborhoods, vell b
i=(0,1,1) as that of staté = (1,0,1). considered and applied to other bitmap images as well. An-
other issue would be to investigate and correlate entrogy an
the perceptive signal to noise ratio measure, which was used
in [2] to investigate the perception of selectively encept
This paper investigated the entropy until the second-astier bitmap images. The product in (23) over the regidh(p)
selectively encrypted bitmap images. To capture informawill be a further focus of future research.

V. Conclusions and Future Work
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