
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 8 (2013) pp. 076-085
c⃝MIR Labs, www.mirlabs.net/jias/index.html

A Comparison about Evolutionary Algorithms for
Optimum-Path Forest Clustering Optimization

Kelton A. P. da Costa, Clayton R. Pereira, Luis A. M. Pereira, Rodrigo M. Nakamura and João Paulo Papa

Unesp - Univ Estadual Paulista, Department of Computing,
Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, Brazil

{kelton.costa,clayton,rodrigo.mizobe,luis.pereira,papa}@fc.unesp.br

Abstract: TIn this paper we deal with the problem of boost-
ing the Optimum-Path Forest (OPF) clustering approach using
evolutionary-based optimization techniques. As the OPF classi-
fier performs an exhaustive search to find out the size of sam-
ple’s neighborhood that allows it to reach the minimum graph
cut as a quality measure, we compared several optimization
techniques that can obtain close graph cut values to the ones
obtained by brute force. Experiments in two public dataset-
s in the context of unsupervised network intrusion detection
have showed the evolutionary optimization techniques can find
suitable values for the neighborhood faster than the exhaustive
search. Additionally, we have showed that it is not necessary to
employ many agents for such task, since the neighborhood size
is defined by discrete values, with constrain the set of possible
solution to a few ones.
Keywords: Optimum-Path Forest, Evolutionary Algorithms, Intru-
sion Detection, Computer Networks.

I. Introduction

Data clustering is one of the most difficult tasks in pattern
recognition, since none information about data is available.
Sometimes, when you have a small portion of labeled data,
it can be used by semi-supervised learning algorithms to im-
prove the performance.
Although several research has been done considering super-
vised methods, it is not so easy to find free-labeled dataset-
s, being most part of the problems still unlabeled. Among
them, we can cite medical image processing, remote sens-
ing and intrusion detection in computer networks. Since the
latter context represents a serious issue in a network envi-
ronment, system administrators have the challenge to avoid
unauthorized access of confidential and privileged informa-
tion. In order to tackle this problem, intrusion detection sys-
tems (IDS) have been developed to scan the network activity
and also to detect such intrusion attacks.
Generally, network intrusion detection relies on machine
learning algorithms to recognize an attack signature given
by a human expert or detect deviations from the normal ob-
served data. As such, some very interesting works have faced
this problem in the last years. For example, Zhong et al. [1]
compared k-means, Mixture-of-Spherical Gaussians, Self-
Organizing Maps and Neural-Gas in network intrusion de-

tection. Portnoy et al. [2] employed traditional clustering
techniques for anomaly detection, and Ye and Li [3] pro-
posed an incremental algorithm for the same task. Guan and
Ghorbani [4] presented a new clustering technique to han-
dle intrusion detection called Y-means, and Eskin [5] ad-
dressed anomaly detection by learning the samples’ proba-
bility distribution. More recently, Wu and Banzhaf [6] have
presented an interesting review about supervised and unsu-
pervised methods applied for intrusion detection in computer
networks. Chaki and Chaki [7] addressed the same problem
for mobile networks, Sen [8] presented a distributed intrusion
detection architecture for wireless-based Ad-hoc network-
s. Cai et al. [9] proposes a new anomaly detection method
in order to deal with the low detection rate and high false
alarms using the Ball Vector Machine (BVM) and Extreme
Learning Machine (ELM). Tartakovsky et al. [10] proposed
a novel score-based multi-cyclic detection algorithm, which
is based on the so-called Shiryaev-Roberts procedure. Such
approach has showed better results than other anomaly de-
tection schemes.
Although we have several unsupervised pattern recognition
techniques, Rocha et al. [11] have proposed a new cluster-
ing algorithm known as Optimum-Path Forest (OPF), which
is a framework of classifiers based on graph partition meth-
ods. The OPF, which has also a supervised version [12],
has demonstrated to improve traditional Mean shift [13] in
terms of robustness to data clustering and number of irrele-
vant clusters. This method works by modeling the dataset as
a k-nn graph, and the main idea is to find some key nodes
(prototypes) and to partition this graph into optimum-path
trees (OPTs) through a competition between them according
to some path-cost function. Thus, each OPT defines a cluster
which represents a group of similar samples that are strongest
connected. Additionally, it is important to highlight the ro-
bustness of OPF clustering has been already evaluated in the
context intrusion detection in computer networks [14].
However, a main drawback of OPF clustering is to find prop-
er values for the k neighborhood to build the k-nn graph.
The naive version employs an exhaustive search in the inter-
val [1, kmax] to find the k value that minimizes the graph cut,
which may be prohibitive for large datasets. Generally, in
the context of intrusion detection in computer networks, it is
not difficult to find datasets with millions of samples. Costa

MIR Labs, USA

77 Costa et al.

et al. [15] have proposed a nature-inspired algorithm to find
suitable values of k using the Harmony Search (HS) [16],
and have validated it in the context of intrusion detection in
computer networks. In this paper, we have compared the ap-
proach proposed in [15] together with a wide range of evolu-
tionary optimization techniques, such as Particle Swarm Op-
timization (PSO) [17, 18], Harmony Search, Bat Algorithm
(BA) [19], Cuckoo Search (CS) [20, 21], Firefly Algorithm
(FFA) [22], Charged System Search (CSS) [23], Gravitation-
al Search Algorithm (GSA) [24]
The remainder of the paper is organized as follows. The OPF
theory is stated in Section II, and in Section III, we present
the evolutionary Optimization Techniques we have employed
in this work. Materials and methods and experimental eval-
uation results are discussed in Sections IV and IV-B, respec-
tively. Finally, conclusions are stated in Section VI.

II. Optimum-Path Forest Clustering

The OPF framework is a recent highlight to the development
of pattern recognition techniques based on graph partitions.
The nodes are data samples, which are represented by their
corresponding feature vectors, and are connected according
to some predefined adjacency relation. Given some key n-
odes (prototypes), they will compete among themselves aim-
ing to conquer the remaining nodes. Thus, at the final of the
process one has an optimum path forest, which is a collection
of optimum-path trees rooted at each prototype.
Therefore, to design an OPF-based classifier, one needs to es-
tablish tree parameters: (i) adjacency relation, (ii) path-cost
function and (iii) methodology to estimate prototypes. De-
pending on the way one chooses them, a different classifier
can be obtained. Thus, the OPF is a flexible way to create
pattern recognition techniques based on the computation of
an optimum-path forest over a graph induced by data sam-
ples.

A. Background Theory

LetZ be a dataset such that for every sample s ∈ Z there is a
feature vector v⃗(s). Let d(s, t) be the distance between s and
t in the feature space (e.g., d(s, t) = ∥v⃗(t)− v⃗(s)∥). A graph
(Z,A) is defined such that the arcs (s, t) ∈ A connect k-
nearest neighbors in the feature space. The arcs are weighted
by d(s, t) and the nodes s ∈ Z are weighted by a density
value ρ(s):

ρ(s) =
1√

2πσ2|A(s)|

∑
∀t∈A(s)

exp

(
−d2(s, t)

2σ2

)
, (1)

where |A(s)| = k, σ =
df

3 , and df is the maximum arc
weight in (Z,A). This parameter considers all nodes for
density computation, since a Gaussian function covers most
samples within d(s, t) ∈ [0, 3σ].
The traditional method to estimate a probability density func-
tion (pdf) is by Parzen-window. Equation 1 can provide a
Parzen-window estimation based on isotropic Gaussian ker-
nel when we define the arcs by (s, t) ∈ A if d(s, t) ≤ df .
This choice, however, presents problems with the differences
in scale and sample concentration. Solutions for this prob-
lem led to adaptive choices of df depending on the region of

the feature space [25]. By taking into account the k-nearest
neighbors, we are handling different concentrations and re-
ducing the scale problem finding the best value of k within
[1, kmax], for 1 ≤ kmax ≤ |Z|.
The solution proposed by Rocha et al. [11] to find k considers
the minimum graph cut provided by the clustering results for
k ∈ [1, kmax], according to a measure C(k) suggested by Shi
and Malik [26]:

C(k) =
c∑

i=1

W ′
i

Wi +W ′
i

, (2)

Wi =
∑

∀(s,t)∈A|λ(s)=λ(t)=i

1

d(s, t)
, (3)

W ′
i =

∑
∀(s,t)∈A|λ(s)=i,λ(t)̸=i

1

d(s, t)
, (4)

where λ(t) is the label of sample t, W ′
i uses all arc weight-

s between cluster i and other clusters, and Wi uses all arc
weights within cluster i = 1, 2, . . . , c.
We say that a path πt is a sequence of adjacent samples start-
ing from a root R(t) and ending at a sample t, being πt = ⟨t⟩
a trivial path and πs · ⟨s, t⟩ the concatenation of πs and ar-
c (s, t). We assign to each path πt a cost f(πt) given by a
path-value function f . A path πt is considered optimum if
f(πt) ≤ f(τt) for any other path τt.
Among all possible paths πt with roots on the maxima of the
pdf, we wish to find a path whose the lowest density value
along it is maximum. Each maximum should then define an
influence zone (cluster) by selecting the strongest connected
samples , than to any other maximum. Formally, we wish to
maximize f(πt) for all t ∈ Z where:

f(⟨t⟩) =

{
ρ(t) if t ∈ R
ρ(t)− δ otherwise

f(⟨πs · ⟨s, t⟩⟩) = min{f(πs), ρ(t)}, (5)

for δ = min∀(s,t)∈A|ρ(t) ̸=ρ(s) |ρ(t)−ρ(s)| andR being a root
set with one element for each maximum of the pdf. Higher
values of delta reduce the number of maxima. We are setting
δ = 1.0 and scaling real numbers ρ(t) ∈ [1,KMax] in this
work. The OPF algorithm maximizes f(πt) such that the op-
timum paths form an optimum-path forest — a predecessor
map P with no cycles that assigns to each sample t /∈ R its
predecessor P (t) in the optimum path from R or a marker
nil when t ∈ R. Algorithm 1 implements this procedure.
Algorithm 1 identifies one root in each maximum of the pdf
(P (s) = nil in Line 4 implies s ∈ R), assigns to each root
a distinct label in Line 5, and computes the influence zone
(cluster) of each root as an optimum-path tree in P , such that
the nodes of the tree receive the same label of its root in a
map L (Line 9). It also outputs the optimum path-value map
V and forest P in Line 11. It is more robust than the Mean
shift because it does not depend on pdf gradients, it uses a
k-nn graph and assigns a single label per maximum, even
when the maximum is a connected component in (Z,A).
Therefore, it is more general because the choice of f(⟨t⟩)
can reduce irrelevant maxima (clusters).

A Comparison about Evolutionary Algorithms for Optimum-Path Forest Clustering Optimization 78

Algorithm 1 – OPF CLUSTERING

INPUT: Graph (Z,A) and function ρ.
OUTPUT: Optimum-path forest P , cost map C and label

map L.
AUXILIARY: Priority queue Q, variables tmp and l← 1.

1. For all s ∈ Z , set P (s)← nil, C(s)← ρ(s)− δ, insert s in Q.
2. While Q is not empty, do
3. Remove from Q a sample s such that C(s) is maximum.
4. If P (s) = nil, then
5. Set L(s)← l, l← l + 1, and C(s)← ρ(s).
6. For each t ∈ A(s) and C(t) < C(s), do
7. Compute tmp← min{C(s), ρ(t)}.
8. If tmp > C(t) then
9. Set L(t)← L(s), P (t)← s, C(t)← tmp.
10. Update position of t in Q.
11. Return a classifier [P,C,L].

A sample t ∈ Z can be classified in one of the clusters
by identifying which root would offer it an optimum path
as though it were part of the forest. By considering the k-
nearest neighbors of t in Z , we can use Equation 1 to com-
pute ρ(t), evaluate the optimum paths πs · ⟨s, t⟩, and select
the one that satisfies

C(t) = max
∀(s,t)∈A

{min{C(s), ρ(t)}} (6)

Let the node s∗ ∈ Z be the one that satisfies Equation 6. The
classification simply assigns L(s∗) as the cluster of t.

III. Evolutionary Optimization Background

In this section we present the evolutionary optimization tech-
niques we have employed in this work.

A. Bat Algorithm

Bats have an amazing capability to detect prey, avoid obsta-
cles, and locate their roosting crevices even in the complete
darkness by emitting a very loud sound pulse and listening
for the echo that bounces back from the surrounding objects.
In addition, bats seem to be able to discriminate targets by the
variations of the Doppler effect induced by the wing-flutter
rates of the target insects [27]. Inspired by those phenomena,
Yang [28] proposed a meta-heuristic algorithm, the Bat Al-
gorithm (BA), to behave as a population of bats looking for
prey/foods using their capability of echolocation.
Firstly, each bat i is modeled with a position x⃗i ∈ ℜn, a
velocity v⃗i ∈ ℜn and a frequency fi. For each time step t, as
t = 1, ...,M , being M the maximum number of iterations,
the movement of a virtual bat i at dimension j is given by
updating its velocity and position using Equations 7 to 9, as
follows:

fi = fmin + (fmax − fmin)β, (7)

vji (t) = vji (t− 1) + (x̂− xj
i (t− 1))fi, (8)

xj
i (t) = xj

i (t− 1) + vji (t), (9)

where β denotes a randomly generated number ∈ [0, 1]. The
result of fi (Equation 7) is used to control the pace and range

of the movement of the bats. The variable x̂ represents the
current best global solution, and fmin and fmax stand for the
minimum and maximum frequency values, which are speci-
fied by the user.
Note that Bat Algorithm works similarly to the standard Par-
ticle Swarm Optimization (see Section III-G) as fi essential-
ly controls the pace and range of the movement of the bats.
To mitigate possible local solutions around the known global
maximum, the Bat Algorithm employs a random walk.
Basically, one solution is selected among the current best so-
lutions, and then the random walk is applied to locally gen-
erate a new solution for each bat:

xnew = xold + ϵA(t), (10)

in which A(t) is the average loudness of all the bats at the
time t, and ϵ ∈ [−1, 1] is a random number. For each itera-
tion of the algorithm, the loudness Ai and the emission pulse
rate ri have to be updated, as follows:

Ai(t+ 1) = αAi(t) (11)

and
ri(t+ 1) = ri(0)[1− e−γt], (12)

where α and γ are constants. At the first step of the algorith-
m, the emission rate ri(0) and the loudness Ai(0) for each
bat should be different and randomly chosen. For instance,
Ai(0) could be ∈ [1, 2] and ri(0) could be ∈ [0, 1]. Howev-
er, the loudness and the emission rates will be updated only if
the new solutions are improved, which means that these bats
are moving towards the optimal solution.

B. Cuckoo Search

The parasite behavior of some species of Cuckoo are ex-
tremely intriguing. These birds can lay down their eggs in
a host nests, and mimic external characteristics of host eggs
such as color and spots. In case of this strategy is unsuc-
cessful, the host can throw the cuckoo’s egg away, or sim-
ply abandon its nest, making a new one in another place.
Based on this context, Yang and Deb [29] have developed
a novel evolutionary optimization algorithm named as Cuck-
oo Search (CS), and they have summarized CS using three
rules, as follows:

1. Each cuckoo choose a nest randomly to lays eggs.

2. The number of available host nests is fixed, and nest-
s with high quality of eggs will carry over to the next
generations.

3. In case of a host bird discovered the cuckoo egg, it can
throw the egg away or abandon the nest, and build a
completely new nest.

Algorithmically, each host nest n is defined as an agen-
t which can contain a simple egg x (unique dimension prob-
lem) or more than one, when the problem concerns to mul-
tiple dimensions. CS starts by placing the nest population
randomly in the search space. In each algorithm iteration,
the nests are updated using random walk via Lévy flights:

xj
i (t) = xj

i (t− 1) + α⊕ Levy(λ) (13)

79 Costa et al.

and
Levy ∼ u = s−λ, (1 < λ ≤ 3), (14)

where s is step size, and α > 0 is the step size scaling fac-
tor/parameter. Here the entrywise product ⊕ is similar to
those used in PSO, and xj

i stands for the jth egg (feature) at
nest i (solution), i = 1, 2, . . . ,m and j = 1, 2, . . . , d. The
Lévy flights employ a random step length which is drawn
from a Lévy distribution. Therefore, the CS algorithm is
more efficient in exploring the search space as its step length
is much longer in the long run [29]. Finally, the nests which
have eggs with the lowest quality, are replaced to new ones
according to a probability pa ∈ [0, 1].

C. Charged System Search

The governing Coulomb’s law is a physics law used to de-
scribe the interactions between electrically charged particles.
Let a charge be a solid sphere with radius r and uniform den-
sity volume. The attraction force Fij between two spheres i
and j with total charges qi and qj is defined by:

Fij =
keqiqj
d2ij

, (15)

where ke is a constant called the Coulomb constant and dij
is the distance between the charges.
Based on aforementioned definition, Kaveh and Talatahar-
i [23] have proposed a new metaheuristic algorithm called
Charged System Search (CSS). In this algorithm, each
Charged Particle (CP) on system is affected by the electrical
fields of the others, generating a resultant force over each CP,
which is determfurtherined by using the electrostatics laws.
The CP interaction movement is determined using Newto-
nian mechanics laws. Therefore, Kaveh and Talatahari [23]
have sumarized CSS over the following definitions:

• Definition 1: The magnitude of charge qi, with i =
1, 2, ..., n, is defined considering the quality of its so-
lution, i.e. objective function value fit(i):

qi =
fit(i)− fitworst

fitbest− fitworst
, (16)

where fitbest and fitworst denote, respectively, the
so far best and the worst fitness of all particles. The
distance dij between two CPs is given by the following
equation:

dij =
∥x⃗i − x⃗j∥

∥ x⃗i−x⃗j

2 − x⃗best∥+ ϵ
, (17)

in which x⃗i, x⃗j and x⃗best denote the positions of the ith,
jth and the best current CP respectively, and ϵ is a small
positive number to avoid singularities.

• Definition 2: The initial position xij(0) and veloci-
ty vij(0), for each jth variable of the ith CP, with
j = 1, 2, . . . ,m, is given by:

xij(0) = xi,min + θ(xi,max − xi,min) (18)

and
vij(0) = 0, (19)

where xi,max and xi,min represents the upper and low
bounds respectively, and θ ∼ U(0, 1).

• Definition 3: For maximization problem, the probability
of each CP moves toward others CPs is given as follow:

pij =

{
1 if fit(j)−fitworst

fit(i)−fit(j) > θ ∨ fit(i) > fit(j),
0 otherwise

(20)

• Definition 4: The value of the resultant force acting on
a CP j is defined as:

r = 0.1max(xi,max − xi,min) (21)

Fj = qj
∑
j,i̸=j

(
qi
r3
· dij · c1 +

qi
d2ij
· c2

)
pij(x⃗i − x⃗j),

(22)
where c1 = 1 and c2 = 0 if dij < r, otherwise c1 = 0
and c2 = 1.

• Definition 5: The new position and velocity of each CP
is given by

x⃗j(t) = θj1 ·ka ·Fj+θj2 ·kv ·v⃗j(t−1)+x⃗j(t−1) (23)

and
v⃗j(t) = x⃗j(t)− x⃗j(t− 1), (24)

where ka = 0.5(1 + t
T) and kv = 0.5(1 − t

T) are the
acceleration and the velocity coefficients respectively,
being t the actual iterations and T the maximum number
of iterations.

• Definition 6: A number of the best so far solutions is
saved using a Charged Memory (CM). The worst solu-
tions are excluded from CM, and better new ones are
included to the CM.

D. Firefly Algorithm

The Firefly Algorithm was proposed by Yang [22] and it is
derived from the flash attractiveness of fireflies for mating
partners (communication) and attracting potential preys. The
brightness of a firefly is determined by some objective func-
tion and the perceived light intensity I depends on the dis-
tance d from its source, as follows:

I = I0e
−ιd (25)

where I0 is the original light intensity and ι stands for the
light absorption coefficient.
As a firefly’s attractiveness is proportional to the light inten-
sity seen by adjacent fireflies, we can now define the attrac-
tiveness β of a firefly by

β = β0e
−ιd2

(26)

where β0 is the attractiveness at d = 0.
A firefly i is attracted to another firefly k with a better fitness
value, and moves according to:

xj
i (t+1) = xj

i (t)+β0e
−ιd2

i,k(xj
k−x

j
i)+ϕ

(
σi −

1

2

)
, (27)

where the second term states the attraction between both fire-
flies, d2i,k stands for the distance between fireflies i and k, ϕ
is a randomization factor and σi ∼ U(0, 1).

A Comparison about Evolutionary Algorithms for Optimum-Path Forest Clustering Optimization 80

E. Gravitational Search Algorithm

Rashedi et al. [24] proposed an optimization algorithm based
on the gravity, which is one of the fundamental interactions
of nature. Their approach, called Gravitational Search Al-
gorithm, models each possible solution as a particle in the
universe, which interacts with other ones according to the
Newton’s law of universal gravitation [30].
Let pi be a particle in a universe, and xi ∈ ℜn and vi ∈ ℜn

its position and velocity, respectively. One can define, at a
specific time t, the force acting on particle i from particle k
in the jth dimension as following:

F j
ik(t) = G(t)

Mi(t)Mk(t)

Rik(t) + τ
(xj

k(t)− xj
i (t)), (28)

where Rik(t) is the Euclidean distance between particles i
and k, Mi stands for the mass of particle i and τ is a small
constant to avoid division by zero. G is a gravitational po-
tential, which is given by

G(t) = G(t0)i(
t0
t
)ζ , ζ < 1, (29)

in which ζ is a control parameter [31], G(t) is the value of
gravitational potential at time t, and G(t0) is the value of
the gravitational potential at the time of the “creation of the
universe” that is being considered [31].
To give a stochastic behaviour to Gravitational Search Algo-
rithm, Rashedi et al. [24] assume the total force that acts on
particle i in a dimension j as a randomly weighted sum of
the forces exerted from other agents:

F j
i (t) =

m∑
k=1,j ̸=i

σjF
j
ik(t), (30)

in which σi ∼ U(0, 1) and m denotes the number of particles
(size of the universe).
The acceleration of a particle i at time t and dimension j is
given by

aji (t) =
F j
i (t)

Mi(t)
, (31)

in which the mass Mi is calculated as follows:

Mi(t) =
qi(t)∑m

k=1 qk(t)
, (32)

with

qi(t) =
fi(t)− w(t)

b(t)− w(t)
. (33)

The terms w(t) and b(t) denote, respectively, the particles
with the worst and best fitness value. The term fi(t) stands
for the fitness value of particle i.
Finally, to avoid local optimal solutions, only the best b mass-
es, i.e., the ones with highest fitness values, will attract oth-
ers. Let B be the set of these masses. The value of b is set to
b0 at the beginning of the algorithm and decreases with time.
Hence, Equation 30 is rewritten as:

F j
i (t) =

∑
b∈B,b̸=i

σbF
j
ib(t). (34)

The velocity and position updating equations are given by:

vji (t+ 1) = σiv
j
i (t) + aji (t) (35)

and
xj
i (t+ 1) = xj

i (t) + vji (t+ 1), (36)

where in which σi ∼ U(0, 1).

F. Harmony Search

Harmony Search (HS) is an evolutionary algorithm inspired
in the improvisation process of music players [16]. The main
idea is to use the same process adopted by musicians to cre-
ate new songs to obtain a near-optimal solution for some op-
timization process. Basically, any possible solution is mod-
eled as a harmony and each parameter to be optimized can
be seen as a musical note. The best harmony (solution) is
chosen as the one that maximizes some optimization criteria.
The algorithm is composed of few steps, as described below:
In order to describe how HS works, an optimization problem
is specified in Step 1 as follows:

min f(x) subject to xj ∈ Xj , ∀j = 1, 2, . . . , N, (37)

where f(x) is the objective function, xj and Xj , mean, re-
spectively, the design variable j and its set of possible values,
and N is the number of design variables. In this work, we
have set Xj ∈ {1, kmax}. As we have only one variable to
be optimized, i.e., k, we have that j = 1.
The HS parameters required to solve the optimization prob-
lem (Equation 37) are also specified in this step. They are:
the harmony memory size (HMS), the harmony memory con-
sidering rate (HMCR), the pitch adjusting rate (PAR), and the
stopping criterion. HMCR and PAR are parameters used to
improve the solution vector, i.e., they can help the algorithm
to find globally and locally improved solutions in the harmo-
ny search process (Step 3).
In Step 2, the HM matrix (Equation 38) is initialized with
randomly generated solution vectors with their respective
values for the objective function:

HM =

x1
1 x2

1 . . . xN
1 f(x1)

x1
2 x2

2 . . . xN
2 f(x2)

...
...

...
...

...
x1
HMS x2

HMS . . . xN
HMS f(xHMS)

 ,

(38)
where xj

i denotes the decision variable j from harmony i.
In Step 3, a new harmony vector x̂=(x̂1,x̂2 ,. . . , x̂N) is gen-
erated from the HM based on memory considerations, pitch
adjustments, and randomization (music improvisation). It is
also possible to choose the new value using the HMCR pa-
rameter, which varies between 0 and 1 as follows:

x̂j ←

{
x̂j ∈

{
xj
1, x

j
2, . . . , x

j
HMS

}
with probability HMCR,

x̂j ∈ Xj with probability (1-HMCR).
(39)

The HMCR is the probability of choosing one value from the
historic values stored in the HM, and (1- HMCR) is the prob-
ability of randomly choosing one feasible value not limited
to those stored in the HM.

81 Costa et al.

Further, every component j of the new harmony vector x̂ is
examined to determine whether it should be pitch-adjusted:

Pitching adjusting decision for x̂j ←
{

Yes with probability PAR,

No with probability (1-PAR).
(40)

The pitch adjustment for each instrument is often used to im-
prove solutions and to escape from local optima. This mech-
anism concerns shifting the neighboring values of some deci-
sion variable in the harmony. If the pitch adjustment decision
for the decision variable x̂j is Yes, x̂j is replaced as follows:

x̂j ← x̂j + rb, (41)

where b is an arbitrary distance bandwidth for the continuous
design variable, and r is a uniform distribution between 0 and
1.
In Step 4, if the new harmony vector is better than the worst
harmony in the HM, the latter is replaced by this new harmo-
ny.
In Step 5, the HS algorithm finishes when it satisfies the stop-
ping criterion. Otherwise, Steps 3 and 4 are repeated in order
to improvise a new harmony again.

G. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an algorithm modeled
on swarm intelligence that finds a solution in a search space
based on the social behavior dynamics [17]. Each possible
solution of the problem is modeled as a particle in the swarm
that imitates its neighborhood based on a objective function.
Some definitions consider Particle Swarm Optimization as a
stochastic and population-based search algorithm, in which
the social behavior learning allows each possible solution to
move onto this search space by combining some aspect of
the history of its own current and best locations with those
of one or more members of the swarm, with some random
perturbations. This process simulates the social interaction
between humans looking for the same objective or a flock of
birds looking for food, for instance.
The entire swarm is modeled as a multidimensional space
ℜn, in which each particle pi = (xi, vi) ∈ ℜn has two
main features: (i) position (x⃗i) and (ii) velocity (v⃗i). The
local (best current position x̂i) and global solution g⃗ are also
known for each particle. After defining the swarm size m,
i.e., the number of particles, each one is initialized with ran-
dom values for both velocity and position. Each individual is
then evaluated with respect to some fitness function and its
local maximum is updated. At the end, the global maximum
is updated with the particle that achieved the best position in
the swarm. This process is repeated until some convergence
criterion is reached. The updated velocity and position equa-
tions of the particle pi in the simplest form that governs the
Particle Swarm Optimization at time step t are, respectively,
given by

vji (t+1) = wvji (t)+ c1r1(x̂i(t)−xj
i (t))+ c2r2(g⃗−xj

i (t))
(42)

and
xj
i (t+ 1) = xj

i (t) + vji (t+ 1), (43)

where w is the inertia weight that controls the interaction be-
tween particles, and r1, r2 ∈ [0, 1] are random variables that
give the stochastic idea to Particle Swarm Optimization. The
variables c1 and c2 are used to guide the particles onto good
directions.

IV. Materials and Methods

In this section, we described the methodology used in the ex-
periments, as well as the datasets employed to compared the
effectiveness and efficiency of the evolutionary-based tech-
niques for finding proper values of k.

A. Datasets

In this work, we have employed two public datasets, as de-
scribed below:

• KddCup1: this dataset is composed of millions samples
and is divided in 23 classes, being 22 of them related to
network attacks, and the remaining one stands for nor-
mal access. The number of features is 41. In this paper,
we used a reduced dataset, which is composed of 9% of
the original dataset size (44,091 samples).

• NSL-Kdd2: is a dataset specially designed to remove re-
dundancy of the well known KddCup’99 dataset. More
details about it can be found in [32]. Notice we have
used 35% of the original dataset (44,090 samples).

B. Experimental Evaluation

As explained in Section II-A, OPF clustering employs the
k ∈ [1, kmax] value to compute the density of each graph n-
ode (Equation 1), and further such value is used to find the k-
nearest neighbors to begin the competition process between
prototypes, since their discrete influence region is bounded
by their neighborhood (inner loop in Lines 6-10 according to
Algorithm 1).
In this work, we compared several evolutionary optimization
techniques to find out k, since the current implementation of
OPF [33] employs an exhaustive search for that, which may
be impracticable for large datasets. Since the clustering qual-
ity can be measured by the minimum graph cut (Equation 2),
we use it as the fitness function, i.e., the evolutionary-based
optimization techniques will find proper k values that mini-
mize the graph cut. As we are working with discrete values
for k, we employed for all techniques an array of size equal
to kmax to save the occurrences of k. The idea is to avoid that
agents with the same solution be evaluated twice, which may
increase the computational load. Thus, techniques with good
exploration ability, i.e., capability to attract the other agents,
can take advantage of this strategy to become faster.
In order to avoid meta-optimization, we have chosen the
meta-heuristic parameters empirically, based in our previous
experience. The maximum number of the iterations were set
as 20. We have also investigated the influence of techniques

1http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

2http://nsl.cs.unb.ca/NSL-KDD

A Comparison about Evolutionary Algorithms for Optimum-Path Forest Clustering Optimization 82

regarding the number of agents. As such, the number of a-
gents has been set within the range [5, 25] in steps of five. Ta-
ble IV-B presents the parameters used for all nature-inspired
optimization techniques employed in our experiments.

Technique Parameters

Bat Algorithm α = γ = 0.9

Cuckoo Search α = 0.01, pa = 0.35

Charged System Search CMCR= 0.9, PAR= 0.4

Firefly Algorithm ϕ = 0.8, ι = β0 = 1

Gravitational Search Algorithm G(t0) = 100, ζ = 20

Harmony Search HMCR= 0.9, PAR= 0.3

Particle Swarm Optimization c1 = c2 = 2, w ∈ [0.4, 0.9]

Table 1: Meta-heuristic algorithm parameters setting. Recall
that w value for PSO was linearly decreased from 0.9 to 0.4.
The same was applied with the number of agents for GSA,
which decreased from the maximum number of agents to 1.

V. Experiments

In this section, we present the experiments conducted to as-
sess the robustness of the evolutionary optimization tech-
niques over KddCup and NSL-Kdd datasets. Firstly, we have
performed an exhaustive search with the traditional approach
available in the LibOPF [33] aiming to find out the optimal
k value within the range [1, kmax], being kmax = 100. We
consider such value reasonable taking into account the size
of both datasets. In regard to KddCup dataset, the minimum
graph cut found was 3.900435 in 390.65 seconds, and regard-
ing to NSL-Kdd the minimum graph cut found was 0.000013
in 346.13 seconds. We used these results as our baseline in
order to compare with the optimization techniques. Thus, the
idea is to verify which techniques are able to achieve close
graph cut values to the ones obtained by exhaustive search.
The remaining discussion presents the results obtained by the
optimization techniques.
As the number of agents increases, a more exploration force
the metaheuristic algorithms have. However, a high number
of agents may increase the computational load. In our case,
we are interested in techniques able to provide a good trade-
off between graph cut values and a low computational load.
Figures 1 and 2 display the average graph cut values over
10 runnings for KddCup and NSL-Kdd datasets. As we can
note, PSO and BA were the best approaches, achieving the
best graph cut values for all number of employed agents. As
such, we can imply that both techniques have good exploita-
tion capabilities, even with a small number of agents.
CSS has been the second best approach, being a good ex-
plorer only when the number of agents has been more than
10. Although CS presented the same behavior as CSS for
KddCup dataset, it was less consistent regarding NSL-Kdd.
Thus, we can infer that CS was not suitable to scape from
local traps in some cases. GSA, HS and FFA were the worst
performers, and they did not present good consistent result-
s as the number of agents vaires. Although GSA achieved
good results with 10, 15 and 25 agents for KddCup dataset;
and 15 and 25 for NSL-Kdd, it did not achieve good results

with 20 agents for both datasets. HS and FFA presented al-
so irregular performances, being them the worst techniques
with a slow exploitation rate.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5 10 15 20 25

G
ra

ph
 C

ut
Number of Agents

BA
CS

CSS
FFA

GSA
HS

PSO

Figure. 1: Graph cut values varying the number of agents for
the KddCup dataset.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

5 10 15 20 25

G
ra

ph
 C

ut

Number of Agents

BA
CS

CSS
FFA

GSA
HS

PSO

Figure. 2: Graph cut values varying the number of agents for
the NSL-Kdd dataset.

From Figures 3 and 4 we can observe the mean execution
times for all techniques over both datasets. As expected, the
best performers, PSO and BA, were the slowest techniques
as the number of agents increases. This happens due to their
good capability for exploring the search space. Unlike, tech-
niques with low explore capability, such as FFA and HS, tend
to move their agents slowly, which may make an agent stay
longer in a position and be not evaluated while its respective
k value does not change. Thus, these techniques may present
a lower computational load regarding to PSO and BA, for
instance.

VI. Conclusions

In this paper we deal with the problem of finding suitable val-
ues for the OPF clustering k-neighborhood that lead to near-
optimal graph cut vales. We have compared several nature-
inspired optimization techniques for such task, and we have
validated it in the context of intrusion detection in computer
networks.

83 Costa et al.

 150

 200

 250

 300

 350

 400

 450

 500

5 10 15 20 25

E
xe

cu
tio

n
T

im
es

[s
]

Number of Agents

BA
CS

CSS
FFA

GSA
HS

PSO

Figure. 3: Execution times in seconds varying the number of
agents for KddCup dataset.

 150

 200

 250

 300

 350

 400

 450

 500

5 10 15 20 25

E
xe

cu
tio

n
T

im
es

[s
]

Number of Agents

BA
CS

CSS
FFA

GSA
HS

PSO

Figure. 4: Execution times in seconds varying the number of
agents for NSL-Kdd dataset.

The experimental results in two public datasets have showen
that all techniques achieved similar graph cut values for Kd-
dCup dataset. In addition, the number of agents did not im-
prove the graph cut results. In regard to NSL-Kdd dataset,
the minimum graph cut values were obtained with 5 agents
by BA, CS, HS and PSO approaches. Therefore, we can note
that the number of agents did not influence the effectiveness,
making the evolutionary techniques slower when the number
of agents increases. However, if we consider only 5 agents,
we can find suitable values for k faster than an exhaustive
search. In regard to future works, we intend to evaluate faster
evolutionary-based optimization techniques for finding suit-
able k values.

Acknowledgment

The authors are grateful to FAPESP (São Paulo Re-
search Foundation) grants #2009/16206-1, #2012/14494-2,
#2011/14094-1 and #2011/14058-5, and also CNPq (Na-
tional Counsil of Technological and Scientific Development)
grant #303182/2011-3.

References

[1] Shi Zhong, Taghi M. Khoshgoftaar, and Naeem Seliya,
“Clustering-based network intrusion detection,” Inter-
national Journal of Reliability, Quality and Safety En-
gineering, vol. 14, no. 2, pp. 169–187, 2007.

[2] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo, “Intru-
sion detection with unlabeled data using clustering,” in
Proceedings of ACM CSS Workshop on Data Mining
Applied to Security, 2001, pp. 5–8.

[3] Nong Ye and Xiangyang Li, “A scalable cluster-
ing technique for intrusion signature recognition,” in
Proceedings of 2nd IEEE SMC Information Assurance
Workshop, 2001, pp. 1–4.

[4] Yu Guan and Ali A. Ghorbani, “Y-means: A cluster-
ing method for intrusion detection,” in Proceedings of
Canadian Conference on Electrical and Computer En-
gineering, 2003, pp. 1083–1086.

[5] Eleazar Eskin, “Anomaly detection over noisy data us-
ing learned probability distributions,” in Proceedings
of the International Conference on Machine Learning.
2000, pp. 255–262, Morgan Kaufmann.

[6] S.X. Wu and W. Banzhaf, “The use of computational
intelligence in intrusion detection systems: A review,”
Applied Soft Computing, vol. 10, no. 1, pp. 1–35, 2010.

[7] R. Chaki and N. Chaki, “IDSX: A cluster based col-
laborative intrusion detection algorithm for mobile ad-
hoc network,” in Proceedings of the 6th International
Conference on Computer Information Systems and In-
dustrial Management Applications, 2007, pp. 179–184.

[8] J. Sen, “An intrusion detection architecture for clus-
tered wireless ad hoc networks,” in Proceedings of the
Second International Conference on Computational In-
telligence, Communication Systems and Networks, july
2010, pp. 202–207.

[9] C. Cai, H. Pan, and J. Cheng, “Fusion of bvm and elm
for anomaly detection in computer networks,” in Inter-
national Conference on Computer Science Service Sys-
tem (CSSS), 2012, pp. 1957–1960.

[10] A.G. Tartakovsky, A.S. Polunchenko, and G. Sokolov,
“Efficient computer network anomaly detection by
changepoint detection methods,” IEEE Journal of S-
elected Topics in Signal Processing, vol. 7, no. 1, pp.
4–11, 2013.

[11] L. M. Rocha, F. A. M. Cappabianco, and A. X. Fal-
cão, “Data clustering as an optimum-path forest prob-
lem with applications in image analysis,” International
Journal of Imaging Systems and Technology, vol. 19,
no. 2, pp. 50–68, 2009.

[12] J. P. Papa, A. X. Falcão, and C. T. N. Suzuki, “Su-
pervised pattern classification based on optimum-path
forest,” International Journal of Imaging Systems and
Technology, vol. 19, no. 2, pp. 120–131, 2009.

A Comparison about Evolutionary Algorithms for Optimum-Path Forest Clustering Optimization 84

[13] Y. Cheng, “Mean shift, mode seeking, and clustering,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, no. 8, pp. 790–799, Aug 1995.

[14] K. Costa, C. Pereira, R. Nakamura, and J. Papa, “Intru-
sion detection in computer networks using optimum-
path forest clustering,” in Proceedings of the IEEE
37th Conference on Local Computer Networks, 2012,
pp. 128–131.

[15] K. Costa, C. Pereira, R. Nakamura, L. Pereira, and
J. Papa, “Boosting optimum-path forest clustering
through harmony search and its applications for intru-
sion detection in computer networks,” in Fourth Inter-
national Conference on Computational Aspects of So-
cial Networks, 2012, pp. 181–185.

[16] Z. W. Geem, Music-Inspired Harmony Search Algo-
rithm: Theory and Applications, Springer Publishing
Company, Incorporated, 1st edition, 2009.

[17] J. Kennedy and R.C. Eberhart, Swarm Intelligence, M.
Kaufman, 2001.

[18] Tang Rui, Simon Fong, Xin-She Yang, and Suash Deb,
“Nature-inspired clustering algorithms for web intelli-
gence data,” in IEEE/WIC/ACM International Confer-
ences on Web Intelligence and Intelligent Agent Tech-
nology (WI-IAT), 2012, pp. 147–153.

[19] X.-S. Yang., “Bat algorithm for multi-objective optimi-
sation,” International Journal of Bio-Inspired Compu-
tation, vol. 3, no. 5, pp. 267–274, 2011.

[20] Xin-She Yang and Suash Deb, “Engineering optimisa-
tion by cuckoo search,” International Journal of Math-
ematical Modelling and Numerical Optimisation, vol.
1, pp. 330–343, 2010.

[21] Rui Tang, S. Fong, Xin-She Yang, and Suash Deb, “In-
tegrating nature-inspired optimization algorithms to k-
means clustering,” in Seventh International Conference
on Digital Information Management (ICDIM), 2012, p-
p. 116–123.

[22] Xin-She Yang, “Firefly algorithm, stochastic test func-
tions and design optimisation,” International Journal
Bio-Inspired Computing, vol. 2, no. 2, pp. 78–84, 2010.

[23] A. Kaveh and S. Talatahari, “A novel heuristic opti-
mization method: charged system search,” Acta Me-
chanica, vol. 213, no. 3, pp. 267–289, 2010.

[24] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi,
“GSA: A gravitational search algorithm,” Information
Sciences, vol. 179, no. 13, pp. 2232–2248, 2009.

[25] D. Comaniciu, “An algorithm for data-driven band-
width selection,” IEEE Transaction on Pattern Analysis
and Machine Intelligence, vol. 25, no. 2, pp. 281–288,
2003.

[26] J. Shi and J. Malik, “Normalized cuts and image seg-
mentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug
2000.

[27] J. D. Altringham, T. McOwat, and L. Hammond, Bats:
biology and behaviour, Oxford University Press, USA,
1998.

[28] Xin She Yang, “A new metaheuristic bat-inspired algo-
rithm,” in Proceedings of the Nature Inspired Coopera-
tive Strategies for Optimization. 2010, vol. 284 of Stud-
ies in Computational Intelligence, pp. 65–74, Springer.

[29] Xin-She Yang and Suash Deb, “Cuckoo search via lvy
flights,” in Proceedings of the NaBIC 2009 - World
Congress on Nature & Biologically Inspired Comput-
ing, 2009, pp. 210–214.

[30] David Halliday, Robert Resnick, and Jearl Walker, Ex-
tended , Fundamentals of Physics, 6th Edition, Wiley,
2000.

[31] R. Mansouri, F. Nasseri, and M. Khorrami, “Effective
time variation of g in a model universe with variable
space dimension,” Physics Letters, vol. 259, pp. 194–
200, 1999.

[32] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani,
“A detailed analysis of the kdd cup 99 data set,” in Pro-
ceedings of the Second IEEE international conference
on Computational intelligence for security and defense
applications. 2009, pp. 53–58, IEEE Press.

[33] J. P. Papa, C. T. N. S., and A. X. Falcão, LibOPF:
A library for the design of optimum-path forest classi-
fiers, 2009, Software version 2.0 available at http:
//www.ic.unicamp.br/˜afalcao/LibOPF.

Author Biographies

First Author Kelton Pontara Augusto da Costa received his
B.Sc. in Systems Analysis from Sagrado Coração Univer-
sity, SP, Brazil. In 2004, he received his M.Sc. in Com-
puter Science from the Centro Universitário Eurı́pides, SP,
Brazil. In 2009, he received his Ph.D. in Electrical Engineer-
ing from the São Paulo State University, SP, Brazil. During
2010-2011, he worked as a post-doctorate researcher at the
Institute of Computing of the University of Campinas, SP,
Brazil. He currently works as a post-doctorate researcher in
the Department of Computer Science of the UNESP - Univ.
Estadual Paulista, SP, Brazil. He is a professor in the De-
partment of Computing, College of Technology of the São
Paulo State since 2008 and his research interests include ma-
chine learning, security in computer networks and detecting
anomalies in computer networks.

Second Author Clayton R. Pereira received his B.Sc. in In-
formation Systems from Facol - Faculdade Orı́genes Lessa,
SP, Brasil in 2008. In 2010, he received a specialization in
Information Technology Management from Faculdade An-
hanguera, SP, Brasil. In 2012, he received his M.Sc in Com-
puter Science from UNESP - Univ. Estadual Paulista, SP,
Brasil. Currently, he is pursuing the Ph.D in Computer Sci-
ence from the Federal University of São Carlos, SP, Brasil.

Third Author Luı́s A. M. Pereira received his B.Sc. in Infor-
mation Systems from UNESP - Univ Estadual Paulista, SP,

85 Costa et al.

Brazil (2011). Currently, he is pursuing the M.Sc in comput-
er science at the same institute. His research interests include
machine learning, pattern recognition and image processing.

Fourth Author Rodrigo Y. M. Nakamura received his B.Sc.
in Computer Science from UNESP - Univ Estadual Paulista,
SP, Brazil (2011). Currently, he is pursuing the M.Sc in com-
puter science at the same institute. His research interests in-
clude machine learning and pattern recognition.

Fifth Author João P. Papa received his B.Sc. in Information
Systems from UNESP - Univ Estadual Paulista, SP, Brazil.
In 2005, he received his M.Sc. in Computer Science from
the Federal University of São Carlos, SP, Brazil. In 2008, he
received his Ph.D. in Computer Science from the University
of Campinas, SP, Brazil. During 2008-2009, he had worked
as post-doctorate researcher at the same institute. He has
been Professor at the Computer Science Department, UN-
ESP - Univ Estadual Paulista, since 2009, and his research
interests include machine learning, pattern recognition and
image processing.

