
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 316-323
c©MIR Labs, www.mirlabs.net/jias/index.html

A Semantic-Enhanced Distributed Architecture for
Providing and Consuming Web Services using

DPWS
Mehdi Khouja1, Carlos Juiz1, Ramon Puigjaner1 and Farouk Kamoun2

1Department of Mathematics and Computer Science, University of the Balearic Islands
Cra. de Valldemossa, km 7.5. 07122, Palma de Mallorca, Spain

{mehdi.khouja,cjuiz,putxi}@uib.es

2National School of Computer Science, University of La Manouba
La Manouba University Campus, 2010, La Manouba, Tunisia

frk.kamoun@planet.tn

Abstract: The omnipresence of mobile devices has changed the
users behaviour. The content present in the Web is created by
simple users. Nevertheless, this content is in the cloud and not
shared directly from users. This behaviour is a passive one. In
this paper, we propose a distributed service architecture which
transforms passive users into service providers. This role is ac-
quired in a specific ambient where users share services with
each other. Thanks to this collaboration, people can find ade-
quate solutions to a specific problem. A university campus sce-
nario illustrates the functionalities of the service architecture.
The proposed solution has a layered structure that integrates
Web services with a semantic modelling of the context. This
model describes a specific vocabulary to be used when creating
or requesting services. The resulting services are organised in
groups according to selected criteria. The solution is based on
the Device Profile for Web service (DPWS).
Keywords: context-awarenes, web service, user behaviour, service
discovery, dpws

I. Introduction

Users have a passive behaviour when interacting with their
mobile phones. They only consume services provided by
third parties. An active behaviour is possible. It will trans-
form users into service providers. In fact, people localised
within the same ambient may share common interests and
collaborate to solve problems.
Let’s consider the following scenario. John, a student in bi-
ology, is searching for a solution to a homework. He starts
a mobile application to search for help within the university
community. Via a guided wizard, John specifies the charac-
teristics of the problem he is facing. He selects the filed, the
category and the type of the problem. He can also indicates
the type of solution he is searching. It can be a file, a link
to a Web site, a book reference or a meeting date with whom
has found the solution. Once John has finished specifying
his needs, the mobile application transforms them to a web
service request.
On the other hand, Bill has found a solution to the above

problem. He starts the same application as John, but in this
case with a provider profile. Via a guided wizard, he speci-
fies the solution he is offering. John’s mobile has only to dis-
cover the announced service and access the solution. Other
students may behave like John or Bill. In this case the cam-
pus network will be overcharged with service requests and
announces. Also, the users may be confused when searching
for the adequate solution. Organising services into groups
is the solution to these issues. In this case the provider pro-
file has to integrate a more complex behaviour. Once Bill
has specified his solution, the application tries to find similar
ones. This list can be accessed as a web service as well. Once
such a list is discovered, Bill service is aggregated to that list.
Otherwise, a new provider list is created. From this point, we
have to distinguish between two provider profiles: the sim-
ple one and the leader profile. The first one waits for service
request and performs the service invocation when required.
The second profile maintains the provider list by adding and
removing elements. When a leader leaves the ambient, he has
to assign a new leader. The later has to notify the providers
about the leader change.
Realising such a scenario is done through a service oriented
architecture. To accomplish this aim, various steps need to be
taken. First, a stack of protocols has to be selected in order
to implement a service oriented architecture. Then, a context
model has to be designed. This model describes the shared
characteristics among the context elements. The behaviour
of the elements operating within the ambient is the next step
in the design of the proposed architecture. It establishes the
users organisation as well as their interactions. It specifies
the way the services are announced and requested within the
ambient.
This paper is organised as follow. First, works dealing with
service oriented architecture and context awareness are de-
scribed. The proposed solution is presented in section III.
The design process is detailed. Then, the architecture compo-
nents are defined. Section IV deals with user behaviours. It
shows the activities associated with the profiles of requester

MIR Labs, USA

317 Khouja et al.

and provider. Finally, the Web service generation process is
illustrated.

II. Related Work

Various context-aware systems have been developed. Some
of them adopt the service oriented paradigm. The discussion
is focused on the user behaviour: passive or active.
CoWSAMI is a service-oriented middleware platform [1].
It supports context-awareness in pervasive environments. It
provides a context manager which is responsible for main-
taining heterogeneous context sources. The context informa-
tions are collected through services. The users are passive
since they only provide the platform with context informa-
tion to have personalised services.
The Anyserver platform [2] is a client-proxy-server architec-
ture that supports context-awareness. The context takes into
account device, network and application characteristics. The
mobile users are only consumers. They access application
provided by the AnyServer platform.
In [3], a context framework is presented. It aims to facil-
itate the development of context-aware adaptable Web ser-
vice. The context information is related mainly to user char-
acteristics such as location and profile. The user behaviour is
a passive one. In fact, it only consumes Web service.
SOCAM [4] is middleware for building context-aware ser-
vices. The context model presents a generalised ontology
and a specific domain one. The later describes various con-
text such as home or vehicle. The service discovery is reg-
istry based. Users access personalised services according to
their context. They are not service providers, but only con-
text providers.
CA-SOA [5] is a context-aware service oriented architecture.
It describes context via an ontology-based model. The ar-
chitecture components support an ubiquitous discovery and
access of Web services. The service repository has a cen-
tralized structure. Therefore, it can not support a distributed
environment.
In [6] Truong et al. survey web service-based context-aware
systems.

III. Distributed Service Architecture

In this section the design steps for the proposed architec-
ture. First, the service discovery process is detailed. Then,
the context model is presented. Finally, the architecture com-
position is described.

A. Service Discovery Model

The first step is designing the service oriented architecture.
Hence, three core concepts have to be specified: Request-
ing, providing and discovering 1. Among these concepts the
later is a key one. It determines the communication model
within the architecture components: centralised or distribut-
ed. In the first case, a central repository is dedicated to store
the different available services. Whether in the second one,
each provider is responsible for announcing his services. S-
ince we are dealing with services in a mobile environment, a
distributed architecture has to be adopted. Another issue in
designing a SOA is related to specification choices: standard

or proprietary.

Service Provider

Service
Registry

Service
Requester

DiscoverPublish

Invoke

Figure. 1: Service oriented architecture core elements

Various service discovery model standards have to be anal-
ysed in order to find the appropriate one for our proposed
approach.
Jini [11], originally developed by Sun, offers a service ori-
ented framework for constructing distributed systems. The
goal of Jini architecture is the federation of groups of
clients/services within a dynamic computing system. Jini
enables users to share services and resources over a net-
work. The technology infrastructure is Java technology cen-
tred. The discovery process relies on a central registry called
a look up service (LUS). Due to its Java dependency and cen-
tralised approach, Jini does not meet our requirements.
The Service Location Protocol [12] (SLP) is being developed
by the IETF. It provides a scalable framework for the discov-
ery and selection of network services.
UPnP [13] (Universal Plug and Play) is maintained by the
UPnP forum initiative. It aims to offer a seamless connectiv-
ity to devices within a network. It comes with a set of specifi-
cation defining the addressing and the discovery of resources
as well as the description and the control of the services with-
in the network. The UPnP discovery process is base on the
Simple Service Discovery Protocol (SSDP). The process is
directory-less.
Bluetooth comes with its own protocol stack. As part of it, it
offers its proper service discovery methods: Bluetooth Ser-
vice Discover Protocol (Bluetooth SDP) [14]. The SDP spec-
ify the behaviour a Bluetooth client application in order to
discover the available services in the Bluetooth servers.
The device profile for web service [7] (DPWS) is an ap-
proved standard of the organization for the advancemen-
t of structured information standards (OASIS) . It is a s-
tack of WS-standards that enables Web service capabilities
on resource-constrained devices. DPWS allows sending se-
cure messages to and from Web services, discovering a Web
service dynamically, describing a Web service, subscribing
to, and receiving events from a Web service. It defines the
following components:

• Client: A network endpoint that sends and/or receives
messages from a service.

• Service: A software system that exposes its capabilities
by receiving and/or sending messages on one or several
network endpoints.

• Device: A distinguished type of service that hosts other
services and sends and/or receives one or more specific
types of messages.

A Semantic-Enhanced Distributed Architecture for Providing and Consuming Web Services using DPWS 318

Taking into account the architecture requirements of the de-
scribed case of study: distributed environment and resource-
constrained devices , DPWS is adequate for the proposed so-
lution.
Figure 2 illustrates the DPWS protocol stack.

Figure. 2: The device profile for web services protocol s-
tack [8]

• WS-Addressing [15]: It describes addressing informa-
tion in SOAP message header independently from the
transport protocol.

• WS-Security [21]: It allows secure communication to
Web services by providing mechanisms of signing, en-
cryption and identity authentication.

• WS-Policy [19]: It allows services to express their poli-
cies (security, quality of service) and clients to specify
their needs.

• WS-Metada-Exchange [18]: I specifies meta-data de-
scription of hosted services and hosting devices.

• WS-Eventing [17]: It defines a protocol of event notifi-
cations via a subscription mechanism.

• WS-Discovery [16]: It defines a multicast discov-
ery protocol to locate services. It supports various
matching techniques between the request and the ser-
vice. These techniques include URI (Uniform Re-
source Identifier), UUID (Universally-unique Identifi-
er), LDAP (Lightweight Directory Access Protocol) and
case-sensitive comparison.

WS-discovery defines two operational mode: an ad-hoc
mode and a managed mode. The first one consists on a dis-
tributed communication model. Clients and devices commu-
nicates via multicast and unicast messages. The second one
involves a device proxy that facilitated the discovery of ser-
vices. The ad-hoc mode is appropriate for our distributed
architecture. The discovery process is composed of vari-
ous message exchanges. When a device joins the network,
it sends a multicast Hello (1) announcing itself and its hosted
services. A Client listens for multicast Hello. If a client miss-
es the later message, it sends a multicast Probe (2) to locate a
specific device and/or service. If a device matches the Probe
message, it sends a unicast Probe Match message (3). If the
transport address of the device was not included in previous

transactions, the client sends a multicast Resolve message
(4) including the device identifier. The corresponding device
answers with a unicast Resolve Match message (5) with it-
s transport address. At this point the client has discovered
the adequate service for its request. The client initiates the
meta-data exchange phase in order to get the corresponding
meta-data of the device (6,7) and the searched service (8,9).
This is fulfilled via the WS-Meta-data-Exchange and WS-
Transfer [20] protocols. Once the client has the meta-data, it
can invoke the desired service (10,11). When a device leaves
the network, it sends a multicast Bye message (12). Figure 3
shows the message exchanges during the service discovery
phase in DPWS.
The analysis of the discovery process shows that a client has
to know the exact service he is searching. Otherwise he has
to treat all the discovered services. Hence, the users need
to share a vocabulary in order to describe the service se-
mantic. Therefore, users will employ the same words when
generating services. The vocabulary is related to the context
where the clients are located. In our case, it describes a prob-
lem/solution issue within the university community. In the
next section, the model of the context vocabulary is detailed.

Client

Device

Service

(1) Hello / Multicast

(2) Probe / Multicast

(3) Probe Match / Unicast

(4) Resolve / Multicast

(5) Resolve Match / Unicast

(6) Get Device Metadata

(7) Get Device Metadata Response

(8) Get Service Metadata

(9) Get service Metadata Response

(10) Invoke Operation

(11) Invocation Response

Service

(12) Bye / Multicast

Figure. 3: Message exchanges in DPWS

B. Service Context Model

The second step is modelling the context in which operate
the users. The context information cover a wide range of
characteristics. Dey’s [10] context definition summarises
these different information sources: ”Context is any in-
formation that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an
application, including the user and applications themselves.”

Since we are dealing with service architecture, the informa-
tion related to the provided service will be taken into account.
In our case, the information include users’ profiles, the prob-

319 Khouja et al.

lems and the solutions. Not only these elements have to be
represented, but also the relationships between them.
Various modelling techniques exist in the literature: key-
value, markup scheme, graphical, object oriented, logic-
based models and ontology-based models. The last one fits
our modelling requirements. In fact, ontologies represent a
description of the concepts, properties and relationships be-
tween concepts. They have a high and formal expressiveness.
Knowledge sharing and reuse can be performed between het-
erogeneous context sources. A discussion of the different
modelling techniques is presented in [9].
The user behaviour has to reflect the SOA concepts. A user
can be a requester or a provider. The first one task is to gener-
ate the service request corresponding to the user choices and
searches for the adequate response. The provider is responsi-
ble for organising the different services available within the
ambient. This task consists on arranging the service among
group following specific criteria that describe the services.

C. Layered Service Oriented Architecture

In a specific context, each user is identified as a Context El-
ement (CoxEl). The CoxEl is structured in a layered archi-
tecture. Three principles layers compose the CoxEl: Web
service, semantic and application layer. Figure 4 shows the
layered architecture.

Figure. 4: CoxEl layered architecture

• The application layer consists on the application pre-
sented in the motivation scenario. It includes three com-
ponents: the presentation module, the request wizard
and the service wizard. The first one is the user inter-

face. The wizard modules retrieve the vocabulary nec-
essary for generating the request or the service.

• The semantic layer includes the problem statement on-
tology. This ontology describes the vocabulary to be
used when requesting or providing the Web services.
This layer is an intermediate between the application
and Web service layer. Once the different concepts re-
lated to the problem or solution description are chosen,
they are transmitted to the Web service layer. Two gen-
erator module are responsible of this task. An ontology
manager module is part of this layer. Its task consists on
importing the ontology instance into the semantic layer.
It updates the ontology according the profile chosen for
the CoxEL. Figure 5 illustrates the problem statement
ontology. In the motivation scenario some concepts will
be instantiated in order to reflect the campus domain. A
user can be a student, a professor or a staff member.
Its role depends on the profile he uses the application.
He can express a solution or a problem. These two pe-
titions are described using the field, category and type
concepts. In the campus environment, the field corre-
sponds to the different discipline in the university: bi-
ology, physics, chemistry, computing,... The category
concept is instantiated as practical or theoretical. The
type can be an exercise, a specific question or a chapter
reference. The solution is provided through a resource
such as an Web site, a file, a text message or a meeting
date.

• The Web service layer incorporates SOA core function-
alities: discovery, invoking and service description. The
web service and its corresponding operations are creat-
ed according to the choices made by the user and the
transformation operated by the service generator in the
upper layers. The WS-layer incorporates the DPWS s-
tack in order to implement a WS oriented architecture.

Figure. 5: Problem statement ontology

A Semantic-Enhanced Distributed Architecture for Providing and Consuming Web Services using DPWS 320

IV. Context Elements Behaviours

The context elements behaviour depends on the profile used
with the application. A CoxEl can be a provider or a re-
quester. In this section, the activities corresponding to each
behaviour are detailed.

A. Requester Behaviour

The requester behaviour has a simple sequence of activi-
ties. Figure 6 shows the activity diagram corresponding to
a CoxEl requester. First, the problem statement ontology in-
stance is loaded within the semantic layer. The vocabulary
described by the instance and the user choices via the appli-
cation are inputs for generating the service request. Since the
service are organised in groups, the requester searches for the
provider list service. If such service is discovered, the CoxEl
will choose the adequate solution service to invoke.

Requester Activity

Search Provider
List Servcie

Invoke Provider List
Service

Import Problem
statement
Instance

Generate Request

Select solution
Service

Invoke Solution
Service

Provider List
Service Found

No

Yes

Figure. 6: Requester activity diagram

B. Provider Behaviour

The provider is responsible of announcing services and per-
forming management tasks. The problem statement ontol-
ogy instance is loaded first. Once the service is generated,
the CoxEl searches for a provider list service that meets the
one his is offering. Whether or not this service is found,
two different scenarios can occur. The first one when the
provider list service is found. Then, the CoxEl acts as a sim-
ple provider. The second scenario occurs when no provider
list service is found. In this case, the CoxEl will acquire the
role of leader. Figure 7 gives an overview of a provider Cox-
El.
A simple provider offers one type of service related to the
solution. After the start up phase, the CoxEl invokes the
join service from the provider leader. Once added to the
service list, it enters in a listen state. It can receive three
type of requests. A solution service invocation . In this case
the CoxEl responds with the solution he is offering. The t-
wo other requests concern the leadership of the provider list.
The provider can be notified about a leader change. A lead-
er assignment request converts the provider into a leader. In
this case, it must notify all the providers in the list about this
change. When a provider decides to leave the ambient, it

Startup Activity

Simple ProviderLeader Provider

Import Problem
statement instance

Generate Solution
Service

Search For
Provider List

Service

Provider
List Found

No Yes

Figure. 7: Provider activity diagram

must notify the leader. Figure 8 details the activities related
to a simple provider

Simple Provider

Leader Provider

StartUp Activity

Invoke Joint
Service

Update Leader

Notify Providers

Provide Solution
service

Notify Leader

Listen Service
Request

Request
Type

Stop
Service

Joint
Accepted

Leader
Assignment

Leader Change
Notification

Service
Solution

No

Yes

Yes

Figure. 8: Simple provider activity diagram

Figure 9 details the activities related to a leader provider.
This role is responsible of maintaining a list of service
provider. It starts by creating a new list and announcing it
as a service within the ambient. The CoxEl enters in a listen
state. It can receive three type of requests. A solution service
request. In this case the CoxEl responds with the solution he
is offering. A CoxEl can request joining the list. Then, the
leader update the list by adding the new provider. A requester
can invoke the provider list service. When a leader leaves the
ambient, he must assign a new leader from the provider list.

V. Web Service Generation Process

The CoxEl provider integrates two type of services: So-
lution service and management service. The solution ser-
vice is composed of various operation depending on the
type of the solution. Let’s consider our campus scenari-
o. The generation process from the vocabulary selection
to Web service is described in figure 10. The figure shows
the ontology concepts with their corresponding individual-
s related to the campus domain. The marked individual-

321 Khouja et al.

Figure. 10: Web service generator for a simple provider

Provider Leader

Simple ProviderStartup Activity

Assign New LeaderJoint Service

Provider List

Provide Solution
service

Annouce Provider List
Create Provider List

Listen Request

Request
Type

Stop
Service

Service Solution
Request

Joint Service
Request

Provider
List

Request

Yes

Figure. 9: Leader provider activity diagram

s are the ones chosen by Bill when specifying his solu-
tion. The choices are biology for field, practical for cate-
gory, exercise for type and meeting and link for resources.
A Web service BiologySolution is created. Two operations
are associated to it: getPracticalExerciseOneMeeting and
getPracticalExerciseOneLink. The first one return a date and
a string that corresponds to the location. The output of the
second operation is a Web site link.
In case the CoxEl has a leader profile, it will integrate man-
agement services. These services include a join service and
a list of provider service. In our motivation scenario, if Bill’s
device has a leader role, it will create a new Web service. The
provider list may corresponds to a list of service or specific
operation. For example a service called ProviderListBiology
will return all the solutions corresponding to the biology
field. The service ProviderListBiologyPractical will return
all the service operations that match the biology and prac-
tical criteria. The leader implements a JoinService that
is responsible of maintaining the list of providers. It in-
cludes operations such as addProvider, removeProvider and
updateProvider.

VI. Conclusion and Future Work

In this paper, we presented an approach that transforms pas-
sive users into service provider. The solution is designed as
a service oriented architecture with a layered structure. The
main characteristic is the use of an ontology model to de-
scribe the vocabulary used in service specification and re-
questing. Also, it integrates Web services standards. The
services are organised within groups according to specific
criteria. This solution limits the message exchanges among
the users. We illustrated the process of service generation
for the provider profile. Extrapolating the architecture to an-
other domain is done by creating an instance of the prob-
lem/statement ontology. Considering a hospital case of s-

A Semantic-Enhanced Distributed Architecture for Providing and Consuming Web Services using DPWS 322

tudy, the ontology vocabulary will describe service related
to this specific scenario. The architecture can switch from a
scenario to another depending on the ontology instance avail-
able for the user context. The application prototype is an on-
going work. Once, it is finalised, we will move to the test
phase. First, an emulation is necessary in order to evaluate
the grouping feature. Then in a real world test, a user satis-
faction metric will be measured.

Acknowledgement

This work is partially supported by the project TIN2007-
60440 Arquitectura Semántica Orientada a Servicios (SOSA)
under Programa Nacional de Tecnologı́as Informáticas of
Ministerio de Ciencia e Innovación, Spain. It has been se-
lected under an operational program financed by the Euro-
pean Social Fund. Mehdi Khouja is a scholarship holder of
the Government of the Balearic Islands, Ministry of Educa-
tion, Culture and Universities.

References

[1] D. Athanasopoulos, V. Issarny, E. Pitoura, P. Vassil-
iadis, and A. Zarras, Mobile Web Services for Context-
Aware Pervasive Environments, in ACM Transactions
on Internet Technology, vol. V, no. December, pp. 1–
30, 2005.

[2] B. Han, W. Jia, J. Shen, and M. Yuen, Context-
awareness in mobile web services, in Parallel and
Distributed Processing and Applications, pp.519–528,
2005.

[3] M. Keidl and A. Kemper, A framework for context-
aware adaptable web services, in Advances in Database
Technology-EDBT 2004, pp. 635–636, 2004.

[4] T. Gu, H. Pung, and D. Zhang, A service-oriented mid-
dleware for building context-aware services, in Journal
of Network and Computer Applications, vol. 28, no. 1,
pp. 1–18, 2005.

[5] I. Chen, S. Yang, and J. Zhang, Ubiquitous provision
of context aware web services, in Services Comput-
ing, 2006. SCC’06. IEEE International Conference on.
IEEE, 2006, pp.60–68.

[6] H.-L. Truong and S. Dustdar, A survey on context-
aware web service systems, International Journal of
Web Information Systems, vol. 5, no. 1, pp.5–31, Mar.
2009.

[7] OASIS Web Services Discovery and Web Services
Devices Profile (WS-DD) TC,Web services dynamic
discovery (ws-discovery) version 1.1, http://docs.oasis-
open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-
spec.html, July 2009.

[8] E. Zeeb, A. Bobek, H. Bohn, and F. Golatows-
ki, Service-Oriented Architectures for Embedded
Systems Using Devices Profile for Web Services,
in 21st International Conference on Advanced In-
formation Networking and Applications Workshops
(AINAW’07).IEEE, 2007, pp.956–963.

[9] M. Khouja, C. Juiz, I. Lera, R. Puigjaner, and
F. Kamoun, An Ontology-Based Model for a Context-
Aware Service Oriented Architecture, in Software En-
gineering Research and Practice, H. R. Arabnia and
H. Reza, Eds. CSREA Press, 2007, pp.608–612.

[10] Anind K. Dey. Understanding and Using Context, in
Personal Ubiquitous Computing, 5(1), pp:4–7, 2001.

[11] Jini technology, 2009, http://www.jini.org.

[12] J. Veizades E. Guttman, C. Perkins and M. Day. Service
location protocol, version 2, rfc 2608. Technical report,
1999.

[13] UPnP Forum. Universal plug and play device architec-
ture version 1.1. Technical report, 2008.

[14] Bluetooth SIG. Service discovery application profile
version 1.1. Technical report, 2001.

[15] W3C Recommendation, Web Services Addressing 1.0 -
Core, http://www.w3.org/TR/2006/REC-ws-addr-core-
20060509, 9 May 2006.

[16] OASIS Standard, “Web Services Dynamic Discovery
(WS-Discovery), http://docs.oasis-open.org/ws-
dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.docx,
1 July 2009.

[17] D. Box, et al, Web Services Eventing (WS-Eventing),
http://www.w3.org/Submission/2006/SUBM-WS-
Eventing-20060315/, 15 March 2006.

[18] K. Ballinger, et al, “Web Services Metada-
ta Exchange 1.1 (WS-MetadataExchange),
http://www.w3.org/Submission/2008/SUBM-WS-
MetadataExchange-20080813/, 13 August 2008.

[19] W3C Recommendation, Web Services Policy 1.5
- Framework, http://www.w3.org/TR/2007/REC-ws-
policy-20070904/, 4 September 2007.

[20] J. Alexander, et al, Web Ser-
vice Transfer (WS-Transfer),
http://www.w3.org/Submission/2006/SUBM-WS-
Transfer-20060927/, 27 September 2006.

[21] OASIS Standard Specification, Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004),
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, 1 February 2006.

Author Biographies

Mehdi Khouja received the engineering and M.Sc degrees
in Computer Science in 2003 and 2004, respectively from
The National School of Computer Science (ENSI), Tunisia.
Currently, he is a PhD candidate in Computer Science at the
University of Balearic Islands (UIB), Spain.

Carlos Juiz received the B.Sc., M.Sc and Ph.D. degrees in
Computer Science in 1988, 1992 and 2001, respectively from

323 Khouja et al.

the University of Balearic Islands (UIB), Spain. He is co-
author of more than 140 international papers and one uni-
versity textbook. Currently he is Vice rector for Information
Technologies at UIB and Associate Professor at the Comput-
er Science Department. He is Senior Member of ACM since
2010. He is also Academic Advocate of ISACA.

Ramon Puigjaner is industrial engineer (Universitat
Politècnica de Catalunya (UPC), Barcelona 1964), Mas-
ter in Aeronautical Sciences (Ecole Nationale Supérieure
de l’Aronautique, Paris 1966). Ph.D. (UPC, 1972), Li-
cense (Bachelor) in Informatics (Universidad Politècnica de
Madrid, 1972) and Doctor Honoris Causa (Universidad Na-
cional de Asunción, Paraguay, 2010). Currently he is Emer-
itus Professor in Universitat de les Illes Balears. Spain. He
is author of a book and of more than 200 reviewed papers
in international journals and conferences. He is Life Senior
Member of IEEE and Distinguished Educator of ACM.

Farouk Kamoun received a engineering degree in 1970
from l’Ecole Supérieure d’Electricité (Supélec), a Master’s
and a PhD degree in 1972 and 1976, respectively from the
University of California at Los Angeles Computer Science
Department. He is co-author of over a hundred publications
in journals and scientific conferences, in the field of comput-
er networking, internet protocols and software engineering.
Currently, he is president of l’Ecole Supérieure des Sciences
Appliquées et de Management (SESAME), Tunisia.

