
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 7 (2012) pp. 307-XXX
© MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Publishers, Inc., USA

Software Watermarking Using Fixed Size Encoding
and Random Dummy Method Insertion

 Subariah Ibrahim1 and Azyan Yusra Kapi2

1 Department of Computer System & Communication, Faculty of Computer Science & Information System,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia
subariah@utm.my

2 Department of Computer Science, Faculty of Computer and Mathematical Sciences,
Universiti Teknologi MARA Negeri Sembilan, 72000 Beting, Kuala Pilah, Malaysia

azyanyusra@ns.uitm.edu.my

Abstract: The rise of software piracy has become rampant and a
major concern among software developers. One of the
techniques that can be used to discourage piracy is
watermarking, by embedding developer’s watermark into
software which can later be extracted to prove ownership.
During the last few years, different algorithms were produced
and developed to hide the watermark inside software. This
paper enhances dummy method insertion technique in
embedding and recognizing the watermark in Java class files.
The enhancement includes the use of fixed size encoding scheme
and random dummy method insertion. The proposed fixed size
encoding scheme used hash function that can produce a fixed
size watermark bit sequences. Random dummy method
insertion selects a dummy method from a collection of dummy
methods randomly. Finally, this study analyzes the
enhancement of dummy method insertion technique using two
different measures, namely data-rate and resilience of the
watermarking algorithm. In terms of data rate, the results show
that encoded watermark for proposed encoding scheme is
always fixed even though size of watermark character is
increased. In terms of resilience, experimental results show no
similarity between class files and thus survived from collusion
attack compared to previous method.

Keywords: software watermarking, encoding scheme, hash function,
software piracy, dummy method, Java class file

I. Introduction

Nowadays, software has become a part of human’s daily life to

ease many tasks in the software industries, e-commerce and

many more. As the usages of the software are growing rapidly,

the rise of software piracy has become a major concern for

software developers.

Java applications that have been sold to users and distributed

through the internet also suffered from piracy. While Java

becomes a popular language in software industry and

education, the advantages of Java which are

platform-independent and its portability has create a problem

towards Java’s user. Platform-independent means that once

Java source code is written and compiled, it can be run

anywhere in any platform.

In order to make Java application executes in any platform,

Java source code needs to be translated into Java class file.

Based on study by [1], Java class file contains Java byte code

and understandable by Java Virtual Machine (JVM). An

attack to this class file can easily be made by

reverse-engineering or de-compilation of the class file itself.

Thus, extracting the source code from the class file is possible

by many tools that can be found in the internet.

The process of reverse-engineering is become easier, thus

competitors can copy other person’s work easily. This could

bring benefits to competitors since it is time consuming and

reduce cost without having to create the algorithm themselves.

Furthermore, competitors and other people could claim other

developer’s program as their own products.

As the technology become rampant, the process of copying

other person’s work become easier and it causes piracy to

become crucial issues. According to the study done by the [2]

in 2009 software piracy has caused USD50 billion lost in the

global software industry, whereas USD368 million lost in

Malaysia. In previous literature, there are many techniques to

prevent software piracy. Code obfuscation, hardware based

solution, checksums and watermarking are some of the

example of the techniques that exist in the literature

mentioned by [3].

Software watermarking is one of the techniques that can be
used to prevent piracy by hiding the developer’s information
inside software [4]. Cappaert et al. [4] stated that the
information can be retrieved later and used when needed to
prove ownership of the original developer. For example, A is
a software developer and sells his software to B. B copied the
software and sells it to third parties and claimed it as his work.
When A knew that B copied his product, A could use the
watermark that has been embedded in the software to prove
his ownership.
Considering the importance of software watermarking, many
algorithms were developed in embedding and recognizing

Ibrahim et al. 308

watermark [5]. Usually, watermark is translated into
unreadable string before it can be embedded in the software to
avoid visibility of watermark [6]. The process of converting
and translating the code is known as encoding process. In this
paper, we present an encoding scheme that produce a fixed
size encoded watermark so that the dummy method that is
used to embed the watermark is less noticeable to attackers. In
addition, random dummy method is used to insert dummy
method randomly from a collection of dummy methods. The
purpose of random dummy method insertion is to avoid the
similarity between two or more Java class file. Furthermore,
with the proposed encoding scheme, long information can be
used as a watermark.
The paper is organized as follows. The next section describes
related works in software watermarking. Section III explains
our proposed encoding scheme and random dummy method
insertion then outlines each process in it. We present the
results of our proposed encoding scheme and random dummy
method insertion in Section IV. This paper concludes in
Section V.

II. Related Works

Up until now, many algorithms such as Qu-Potkonjak (QP)

algorithm, opaque predicate algorithm and many others were

introduced in the literature. Despite all that, [7] summarized

that unfortunately most of the algorithms on software

watermarking are not well-described, not being implemented

and evaluated yet. In their study, they have tested two

algorithms which are dummy method insertion algorithm and

Davidson–Myhrvold (DM) algorithm. Both of the algorithms

have been evaluated according to the six different properties

mentioned in their study.

In their evaluation, DM algorithm reveals a high credibility,

satisfactory in data-rate and 50% survival rate towards

resiliency. In case of dummy method algorithm, they have

pointed several pros and cons in term of part protection,

data-rate and also has 70% survival rate towards resiliency.

Generally in the dummy method insertion technique, all the

developer’s information is hidden inside the dummy method.

In term of part protection, the technique or algorithm must be

able to fully protect the watermark so that the whole

watermark is spread throughout the entire class file. Both of

DM algorithm and dummy method insertion algorithm hide

the watermark in a single method. Thus, [7] concluded that

DM algorithm and dummy method insertion algorithm can be

considered as poor, since any alteration involved in the

statement of the method will destroy the watermark.

Dummy method insertion was first introduced by Monden et
al. [8]. The algorithm inserts a dummy method into the
software that is then used to hide the watermark. The
advantages and disadvantages of dummy method insertion
technique have been evaluated in [7]. One of the advantages
of dummy method insertion is high data rate.
High data rate represents a good point in the algorithm as it
can hide a large portion of watermark within the software.
Previous encoding scheme that were used in [8] build their
own translation code based on watermark character sequences.

A hash table needs to be built in order to provide assignment
rule for embedding process. As for dummy method algorithm,
since the algorithm prepares the space for dummy method
according to the size of the watermark; it has no difficulties in
embedding large size watermark. Thus, no matter how large
the watermark’s size, the dummy method could provide
spaces for the watermark. However, in contrast, the larger the
watermark’s size, the longer dummy method’s instruction
will be produced. In this situation, instructions in the dummy
method become longer than expected and hence will create
suspicions to the pirates. Despite the advantage in data rate,
the dummy method insertion has the ability to hide various
watermark sizes, but in contrast it leads to the visibility of the
dummy method.
Other than data rate, resilience is one of the properties used in
[7] to evaluate the algorithms. Resilience can be defined as
the capability of the technique in securing the watermark,
resist and resilient to the attack imposed upon them. There are
four types of attacks that have been highlighted by [7] which
are additive, subtractive, collusion and distortive attack. In
addition to classify the attack, [9] have come out with seven
different attacks towards the watermark in class file. However,
[7] highlight the disadvantage of dummy method insertion
technique in term of resilience which is collusion attack
towards dummy method. The collusion attack consists of
performing different watermark in the same class file. After
decompiling and comparing both of the watermarked class
file, several instructions in the class file can be seen
noticeably by the attacker. The only difference in the class file
can be considered as the watermark. This caused dummy
method to be discovered by the attacker and still need to be
improved in term of collusion attack. Thus, in this paper, we
proposed an enhancement by using a fixed size encoding
scheme and random dummy method insertion based on the
previous method by [8].

III. Design of Fixed Size Encoding and Random
Dummy Method Insertion

In order to enhance previous method, fixed size encoding and
multiple dummy methods are developed and designs were
discussed in following section. Section A discussed fixed size
encoding scheme based on results presented in [14] and
Section B described dummy method development in further
detail.

A. Design of Fixed Size Encoding

A different encoding scheme from [8] was designed in order
to improve performance of dummy method. As mentioned
before, the previous encoding scheme produces dummy
method instruction based on the size of watermark.
In software watermarking, encoding process is applied so that
watermark characters can be encoded into unreadable string.
It is because encoded watermark is not readable and less
noticeable by the pirates instead of using watermark
characters. Furthermore, the goal of encoding the watermark
is to reduce the number of watermark characters embedded in
the software so that any additional information added into the

Software Watermarking Using Fixed Size Encoding and Random Dummy Method Insertion 309

software is less noticeable. The flow of the process is depicted
in Figure 1.

Figure 1. Flow of Software Watermarking

In Figure 1, watermark characters are input to watermark
encoding process and they yield encoded watermark in a
binary string format. The encoded watermark is then sent to
watermark embedding process to produce watermarked
software.
In case of dummy method insertion, encoding scheme shall be
designed in such a way so that no matter how long the
watermark’s size is, it will not have impact on the dummy
method’s instruction. Impact on the dummy method consists
of length of instructions produced on the dummy method.
Thus, in designing the encoding scheme, watermark
characters should be translated into fixed size of bit sequences.
Conceptually, hashing function seems to be suitable for this
encoding scheme. Hash function is chosen to be applied in
this encoding because of its most important property, which is
fixed size. It will produce a fixed size output known as
message digest, no matter how big the watermark’s size is. In
other words it always generates the same length of message
digest.
The size for bit sequence should not be too large as it degrades
performance of software, neither too small to affect visibility.
A 128 bit is the right answer for this purpose. After
considering hash functions that fit perfectly for dummy
method creation, Message Digest algorithm 5 (MD5) was
selected to be used in the proposed encoding scheme since it is
a well-known algorithm that could produce 128 bit message
digest [10].
Thus, by using MD5 in any cases of watermark’s length, it
does not affect the size of the dummy method, because the size
of the encoded watermark is always fixed and hence we need
to design dummy method that can embed 128 bits of
information for embedding watermark.
We proposed a fixed size encoding scheme that uses hash
function in translating watermark characters into fixed size
unreadable code which is encoded watermark. The encoded
watermark is always in a fixed size according to hash function
that is used in the encoding process.

B. Random Dummy Method Insertion

As mentioned in previous section, dummy method’s

similarity for each watermarked class file is also taken into

consideration. To resolve given situation, a collection of

different code representation of dummy method is generated

based on [8] and will be taken randomly and inserted into

class file. This will cover the similarities at least up to certain

number of class file. In order to avoid the similarities between

the dummy methods in watermarked class file, several

designs in large collection of dummy method need to be

produced. Possibility of producing similar dummy method

could be avoided by providing large collection of dummy

method.

Source code for dummy method is designed and compiled

using Java Virtual Machine (JVM) to get a class file for the

method. Class file contains byte code instruction in it. After

that, embedding space in the class file is calculated. In this

case, 128 bit is the exact space needed for embedding process

because MD5 produced 128 bit message digest. Figure 2

shows pseudocode used in this calculation.

Figure 2. Pseudocode to Calculate Encoding Space

If the space is equal to 128, dummy method is ready to be

added into collections of multiple dummy method. Otherwise,

source code for the dummy method is adjusted and recalculate

until 128 spaces is produced.

In order to insert dummy method to the class file, random

number will be generated according to the number of multiple

dummy methods. The random number represents which

dummy method that needs to be inserted into class file. Figure

3 depicts process for random insertion in dummy method.

Watermark
Character

Watermark Encoding

Watermark Embedding

Encoded
Watermark 01010011

0101010111 …

Watermarked

Software

Procedure Calculate_Encoding_Space:
Input: a generic method that can be modified
BEGIN

1. get-instruction-list(methodGen)

2. if instruction-list null then

3. return 0

4. end if

5. for all instruction list in method loop

6. if instruction-list is Arithmetic then

7. total-encoding-space :=

total-encoding-space + 3

8. else if instruction-list is Numerical then

9. total-encoding-space :=

total-encoding-space + 8

10. end loop

11. return total-encoding-space

END

Ibrahim et al. 310

Figure 3. Random insertion of dummy method

From Figure 3, the dummy method was chosen randomly

from the collection and inserted into the class file along with

the watermark. The watermark embedding and recognition

process is discussed in the following paragraph.

1) Embedding Phase

After encoded watermark is generated in encoding process,

embedding process replaced and overwrites each bit in

encoded watermark with chosen opcode in dummy method

based on hash table depicted in [8]. Embedding process is

done by referring to the bit assignment rules on Figure 4.

Figure 4. Design of embedding process

By referring to Figure 4, the dummy method insertion phases

take Java class file as an input. Noted that to get a Java class

file, Java source code must first need to go through

compilation process by JVM and then translated into byte

code. The byte code instructions are kept in Java class file.

Process of choosing random dummy method is depicted in

Figure 3.

Key generation is not a part of contributions in this study, only

focused on dummy method creation and random dummy

method insertion. However, key that is given by user is used to

generate hash table according to bit assignment rules. The

hash table describe the approach uses to embed the watermark

inside the Java class file and its bit assignment rules. After bit

is replaced and overwritten in dummy method, the

watermarked class file is yield. Figure 5 describes step by step

in embedding process.

Figure 5. Step by step in embedding process

In software watermarking, design of watermarking system

includes embedding and recognition phases. Recognition

phase is described in following section.

2) Recognition Phase

The recognition procedure is based on [8] but with some

enhancement. Watermark is retrieved from the class file

based on bit assignment rules described in [8]. Retrieval is

done by searching from top of the class to the end of the class

file. It is assumed that bit assignment rules are known from

the beginning.

The change made in this recognition phase is that in order to

recognize the watermark, input of the claimed watermark

must be supplied together with the class file. The claimed

watermark can be identified as the original watermark that

the developer claims to prove it as theirs. In the end of the

recognition phase, the encoded watermark from the claimed

watermark is then will be compared to the encoded watermark

retrieved from the class file. If they are similar to each other,

then, class file is proved as theirs. Figure 6 shows design of

recognition phase for proposed method.

Input: Class File, Watermark character, WMo and
numerical key K

1. Encode watermark using MD5Hash and produce encoded

watermark, WMe

Hash(WMo)WMe

2. Create hash table using a key, K

3. Choose a dummy method using Pseudo-Random Number

Generator (PRNG)

4. Insert dummy method in class file

5. Embed WMeusing hash table created in Step 2.

5.1. Search for any numerical operands and arithmetic

opcodes that match in hash table

5.2. If match found for numerical operand,

5.2.1. Overwrite numerical operand by desired 8

bits in WMe

5.3. If match found for arithmetic opcode,

5.3.1. Replace opcode by desired 3 bits in WMe

6. Repeat step 5.1 to 5.3 until 128 bit of WMe is

embedded in class file.

Generate random
number

Chosen dummy method inserted
into class file

Collection of dummy methods
Class
file

Software Watermarking Using Fixed Size Encoding and Random Dummy Method Insertion 311

Figure 6. Design of recognition phase

From Figure 6, step by step procedure in recognition phase is
depicted in Figure 7.

Figure 7. Step by step in recognition process

From Figure 7, the claimed watermark is the important

parameter in this phase as the original developer supposes to

know their own secret information embedded in the class file.

If they are original developer and owner of the watermark, the

system should display the similarity of MD5 signature for

both claimed and original watermark.

IV. Results and Discussions

In the previous section, design for proposed method which
includes fixed size encoding scheme and random dummy
method insertion has been presented. The proposed method
enhances lacking properties in data rate and collusion attack
discussed in Section II. Results based on data rate are

presented in Section A, while Section B showed results of
class file towards collusion attack.

A. Results on Fixed Sized Encoding Scheme

In this study, the encoding scheme is designed for dummy

method insertion technique, so that the size of encoded

watermark is always fixed for all watermarks no matter the

size of watermark to be embedded. In this case, encoded

watermark can be defined as number of bits needed in

embedding process. The design applied hash function and

leads to a creation of fixed size for each given watermark.

Thus, encoded watermark produced in proposed encoding

resulted in fixed dummy method’s creation compared to

variation of encoded watermark. The analysis of the proposed

scheme is done in three aspects: format, length of the encoded

watermark and comparison between previous and proposed

encoding scheme. Format of encoded watermark is discussed

in the next section.

1) Format of Encoded Watermark

In comparison, format of encoded watermark for previous and

proposed encoding is different. Our proposed encoding has

eliminated prefix and suffix in previous encoding that were

placed at the start and end of encoded watermark. The prefix

and suffix are used to determine the starting and ending

position of the watermark. Table I shows the format of

encoded watermark for both encoding schemes.

Table 1. Format of Encoded Watermark for Both Encoding

Comparisons
Criteria

Previous Encoding Proposed Encoding

Format

Difference Has overhead,
x: size of prefix and suffix
y : size of watermark

Fixed size of encoded
watermark, remove
overhead.

Referring to Table I, encoded watermark in proposed

encoding scheme is always 128 bit in size whereas previous

encoding produces variable encoded watermark. Another

disadvantage is that the previous encoding scheme requires

some overhead that indicate the start and end of the encoded

watermark. However, proposed encoding has eliminated the

overhead in the previous encoding.

2) Length of Encoded Watermark

Another difference between previous and proposed encoding

scheme is the length of encoded watermark. Three different

lengths of watermark are used as samples for the analysis

which are 20, 32 and 44 characters. Table II shows the

Input: Watermarked Class File, Claimed Watermark character,

WM
c
 and numerical key K

1. Encode claimed watermark WMc using MD5 Hash

Function and this will produce encoded watermark, WM
e

Hash(WM
c
)WM

e

2. Create hash table using a key, K

3. Search dummy method in class file according to

method that has 128 bit embedding space and method name

4. Retrieve original watermark WM
o
 by using hash table

created in Step 2.

4.1 Search for any numerical operands and arithmetic

opcodes that match in hash table

4.2 If match found for numerical operand,

4.2.1 Add desired 8 bits in WM
o

4.3 If match found for arithmetic opcode,

4.3.1 Add desired 3 bits in WM
o

5. Repeat step 4.1 to 4.3 until 128 bit of WM
o
 is

retrieved from class file.

6. Compare WM
e
 obtained from Step 1with WM

o
 from Step 4.

7. Display message whether watermark is same or not.

m Space
Encoded
watermark

x x y

Encoded

watermark

128 bit

Ibrahim et al. 312

encoded watermark produced by encoding scheme for the

previous and the proposed scheme.

Table 2. Comparisons of Encoded Watermark’s Length for
Both Encoding

Watermark
Character

Encoded Watermark
Using Previous

Encoding

Encoded Watermark
Using Proposed

Method
(C) AHMAD
AMRAN 2011

LENGTH: 20
characters

00000001001000110100
01010110010001110011
01000110100001001001
00111010101111001100

LENGTH: 80 bits

1011101111000010000
0110000011101111010
0000101100010000101
1111011101010011010
1000010010100001100
0110000010001000000
1110100011011

LENGTH: 128 bits

AHMAD
AMRAN AIST
SDN BHD
2009-11

LENGTH: 32
characters

00000001001000000011
01000000001001010000
01100100000001111000
10010100100000110110
01001010000100110100
10111100110011011110
11111111

LENGTH: 128 bits

0101101000000010001
1011110110101011101
1100100100001011110
1101001111000110110
1110011000110011101
0110100111001011100
1111111011001

LENGTH: 128 bits

(C) AHMAD
AMRAN ART
IN
SOFTWARE
SDN BHD
2011

LENGTH: 44
characters

00000000010001000011
00100001010011000100
00111000110010000110
01000001000100100011
00100010000101000011
01011010010001101100
01101011100101001111
00100010001000000011
01100001110100100011
10001001010011100011
10010100111010010100

LENGTH: 220 bits

1100100010001010010
1110110101100010010
1011000100110011111
0111011011001100110
0100111100110100101
0111110000011110111
0111111100001

LENGTH: 128 bits

In the previous scheme, the first example shows that 20

characters length of watermark produces 80 bits encoded

watermark. By using the proposed method, the first example

has resulted in producing 128 bits encoded watermark. The

previous encoding has an advantage in the first example but

the second example shows that both of the encoding schemes

produce the same length of encoded watermark which are 128

bits. Finally, the third example in Table 2 displays 44

watermark characters produce 220 bits in the previous

encoding scheme while the proposed scheme outputs only 128

bits. These three comparisons proved that the proposed

method always produce fixed size of 128 bit of encoded

watermark, no matter how long the watermark character is

entered as an input. From the table it can be seen that that the

length of the encoded watermark increases as the length of the

watermark characters increases for the previous method.

Thus, long watermark character has no impact on dummy

method instruction technique.

3) Comparison between Previous and Proposed
Encoding

In order to compare both encoding scheme in terms of data

rate, a formula for calculating encoded watermark is

generated for both previous and proposed encoding schemes.

The previous encoding scheme uses a specific method in

order to minimize encoded watermark in dummy method [8].

The limitation of space in the dummy method needs the

encoded watermark to be as small as possible. In order to

minimize the length of encoded watermark, the bit to be

embedded in the dummy method is defined using a translation

scheme [8]. The formula to calculate length of encoded

watermark is based on (1).

mr s ; m=2p ≥ q

where

B = length of encoded watermark

r = watermark’s length

s = number of bits to store watermark’s length

m = number of bits that accommodate distinct characters

p = number of bits to encode different characters

q = different characters in watermark

The length of encoded watermark is formulated in this study

by referring to the previous encoding scheme in [8]. This

formula depends on different characters in watermark, where

increasing number of distinct character would increase the

length of encoded watermark. By using an assumption that 8

bits is needed to store watermark’s length s, length of encoded

watermark in the previous encoding scheme is calculated and

displayed in Table 3.

Table 3. Length of Encoded Watermark in Previous Encoding

Watermark’s
length, r

Different
characters

in
watermark,

q

Number of
bits that

accommodate
distinct

characters, m

Length of
encoded

watermark,
B

16 10 4 72
18 12 5 98
20 14 5 108
22 16 5 118
24 18 5 128
26 20 5 138
28 22 5 148
30 24 5 158
32 26 5 168
34 28 6 212
36 30 6 224
38 32 6 236
40 34 6 248
42 36 6 260
44 38 6 272

In Table 3, length of encoded watermark increases as the
watermark’s length increases. This lead to disadvantage in
dummy method insertion technique as the size of dummy
method’s instruction also increases. On the other hand, the
formula for calculating the length of the encoded watermark
for the proposed encoding scheme is as follows:

c (2)

where

Software Watermarking Using Fixed Size Encoding and Random Dummy Method Insertion 313

B = length of encoded watermark
c = size of hash value in bit length
By using (2), the length of encoded watermark for the

proposed encoding scheme is presented in Table IV. From

Table 4, constant rate in producing encoded watermark in

proposed method has resulted in high data rate for embedding

process. High data rate is one of the important properties of

watermark that represents a large capacity of information that

can be hidden in software [11]. Results in Table 3 and Table 4

were presented in form of graph in Figure 3.

Table 4. Length of Encoded Watermark in Proposed
Encoding

Watermark’s length, r Length of encoded watermark, B
16 128
18 128
20 128
22 128
24 128
26 128
28 128
30 128
32 128
34 128
36 128
38 128
40 128
42 128
44 128

Figure 8. Comparison between Previous and Proposed
Encoding

In Figure 8, it can be concluded that by using the previous
scheme, encoded watermark is proportional to the number of
distinct character. This is because more calculation and
process is needed in order to encode the watermark character.
More process such as hash table is involved in previous
encoding and more time is needed in terms of performances of
the system.
In order to use the previous encoding scheme, the length of

watermark character needs to be stored along with the

watermark. This situation has added extra length to the

encoded watermark. However, by using the proposed

encoding scheme, the encoded watermark is always fixed

according to the size of hash value. Hash value in this

proposed encoding scheme is equal to 128 bit. Even though

the length of the watermark varies, after encoding process, the

length of encoded watermark is fixed and always 128 bits.

The size of encoded watermark leads to the number of

instruction in dummy method. This situation reduces the

suspicious of dummy method towards collusion attack.

Collusion attack is defined as fingerprint comparison in

different application [12] whereas [13] classified it as

different application but contains the same watermark. In this

situation, dummy method insertion technique could avoid

collusion attack of different application but with the same

watermark embedded.

B. Results on Random Dummy Method Insertion

Collusion attack is done in order to compare two different
class files and detect any similarities between them. This
situation can be depicted in real case, if attacker tends to
compare different two class files and detect existence of
dummy method on it. If dummy method is detected, attacker
could remove the method and watermark embedded on it will
then be destroyed. After dummy method is inserted into class
file, the class file is then decompiled to get the source code.
This attack is done by decompiling watermarked class file
using JadDecompiler. Table 5 shows the differences of
instruction on dummy method for both methods in first test.

Table 5. Comparison of embedded watermark between

previous method [8] and proposed method

From Table 5, previous method embeds the watermark in first

instruction of dummy method whereas proposed method is

distributed. Besides, proposed method does not reuse

instruction in existing method unlike previous method.

In random dummy method insertion technique, collusion

Criteria Previous
Method

Proposed
Method

Length of
Embedded
Watermark
(characters)

20 20

Pattern in
embedding

Focus only on

first instruction

in dummy

method

Offset: 0 – 40,

51,63, 75, 87

The rest of
opcodes is
copied from
existing method
in the class file

Distributed

through several

instructions in

dummy method

Offset:
1, 7, 16, 25, 27,

29, 31, 57, 59,

60, 63, 123, 140,

142, 185, 194,

202, 210, 211,

213 and 219

Does not reuse
the instruction
in existing
method.

Ibrahim et al. 314

attack has been done to compare different test file with same

watermark. As mentioned in Section I, objective of this study

is to design an encoding scheme technique and to enhance a

watermarking technique that is less noticeable to the attacker.

Problems in previous implementation were discussed in

Section II. Further testing was done to demonstrate that

objectives are achieved throughout this study.

For each of test file, they contained different number of class
file. Only a few of them were chosen to be watermarked. In
this attack, three different watermarked files in same test files
were being decompiled. Screen captured for dummy method
on the three different class files were captured and depicted in
Figure 9, Figure 10 and Figure 11 respectively. Figure 9
highlights dummy method on “MetalworksFrame” class file
after decompiling process.

Figure 9. Dummy method on “MetalworksFrame” class file

after decompiling process

Figure 10. Dummy method on

“MetalworksDocumentFrame”class file after decompiling

process

Figure 11. Dummy method on “MetalworksPrefs” class file

after decompiling process

By using same watermark, two different test files in previous
implementation formed same instruction in the first line of
dummy method. This indicated the same watermark which is
embedded in test file. Thus, in real situation, it is easier for
attacker to detect the watermark if they have two different
copies of applications from the same developer. However,
current implementation shows that different instruction in
dummy method was produced for three of class files. Even
though same watermark is embedded in three different class
files which are shown in Figure 9, Figure 10 and Figure 11,
they depicted no similarity for dummy method instructions
when compared to each other. The difference and no
similarity in term of line of code could make the dummy
method less noticeable to attacker compare to the same
instructions that were produced in previous implementation
that lead to suspicions among the attacker. Thus, proposed
method results in less noticeable dummy method compared to
previous implementation.

V. CONCLUSIONS AND FUTURE WORK

Software watermarking has been widely used to serve the
purpose of embedding secret information of original
developer and can be retrieved when needed. Software
watermarking usually consists of watermark encoding,
watermark embedding and watermark retrieving. In this
paper, we have presented an encoding scheme that produces
fixed size encoded watermark. The proposed scheme is done
based on the problem that arises in dummy method insertion
technique that has been discussed previously. Our proposed
scheme applied a hash function and it can be useful to hide
large watermark characters in watermark embedding. In

Dummy

method

Dummy

method

Dummy
method

Software Watermarking Using Fixed Size Encoding and Random Dummy Method Insertion 315

conclusion, the proposed encoding scheme produces encoded
watermarks of the same sizes as compared to the previous
encoding scheme. Furthermore the scheme does not affect the
number of lines in dummy method coding and prove to be
high in data rate.

The analysis done in this study is concluded that a
disadvantage in previous method is improved by creating 128
bit fix size for each watermark character. In term of data rate,
graph showed that proposed method have constant rate of
encoded watermark. This caused dummy method to be less
noticeable during collusion attack. Thus, algorithm in
embedding and extracting process can protect the copyright
owner to remain on the software without being noticed by the
attacker. Both situations can be compared on previous
implementation. The successful of the applied method in
dummy method insertion technique has contributed to the
enhancement of the general technique. In future, several
modifications need to be considered in order to improve and
enhance the performance of the dummy method insertion
technique.
In conducting an analysis, more properties need to be tested
on the class file. Several attempt that suitable in attacking the
class file need to be done. Additive attack for example can be
done, but different test file need to be tested on proposed
method. Another method shall be implemented so that it can
detect the first watermark instead of second watermark embed
in class file. In addition as the proposed watermark do not
ensure to meet other watermark properties, it is recommended
to test the algorithm in different properties. The performance
of the algorithm also needs to be considered in reducing
overhead issue. In conclusion, there is still a room for
improvement that need to be done towards the carried study.

Acknowledgment

This work was supported by Universiti Teknologi Malaysia
(UTM), Johor, Malaysia under the
VOT:Q.J13000.7128.00J29.

References

[1] Lim, H., Park, H., Choi, S. and Han, T. (2009). A Method
for Detecting the Theft of Java Programs through
Analysis of the Control Flow Information. Journal of
Information and Software Technology 51, September 9,
2009. 1338-1350.

[2] B. S. Alliance, “Sixth annual BSA Global and IDC
global software piracy study,” Business Software
Alliance, Tech. Rep. 6, 2008.

[3] Naumovich, G. and Memon, N. (2003). Preventing
Piracy, Reverse Engineering, and Tampering Computer,
36(7), 64- 71, July 2003.

[4] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and KD.
Bosschere “Towards Tamper Resistant Code Encryption:
Practice and Experience”. Proc. of the 4th international
conference on Information security practice and
experience (ISPEC'08), Liqun Chen, Yi Mu, and Willy
Susilo (Eds.). Springer-Verlag, Berlin, Heidelberg,
2008, pp. 86-100.

[5] C. Collberg, G. Myles and A. Huntwork, Sandmark—A
Tool for Software Protection Research. IEEE Security
and Privacy 1, 2003, pp. 40-49.

[6] Y. He, “Tamperproofing a Software Watermark by
Encoding Constants”. Department of Computer Science,
University of Auckland 2002.

[7] G. Myles, C. Collberg, Z. Heidepriem, and A. Navabi,
“The evaluation of two software watermarking
algorithms,” Journal of Software – Practice and
Experience, vol. 35, pp. 923–938, 2005.

[8] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K.
Torii, “A Practical Method for Watermarking Java
Programs,” In the 24th Computer Software and
Applications Conference, pp. 191 – 197, 2000.

[9] Gupta, G. and Pieprzyk, J. (2007). Software
Watermarking Resilient to Debugging Attacks (2007).
Journal of Multimedia, 2, 10-16, Apr 2007.

[10] J. Deepakumara, H.M. Heys and R. Venkatesan, “FPGA
implementation of MD5 hash algorithm”. In the
Electrical and Computer Engineering Conference, vol. 2,
Toronto, Ont., Canada, 2001, pp. 919 – 924

[11] W. F. Zhu, “Concepts and Techniques in Software
Watermarking and Obfuscation,” Thesis of Doctor of
Philosophy in Computer Science, Department of
Computer Sciences, University of Auckland, New
Zealand, 2007.

[12] J. Nagra, “Collusive Attacks against Software
Watermarks”. Annual International Technical
Conference of IEEE TENCON Region 10 Conference.
Wan Chai, Hong Kong.14-17 November, 2006.

[13] H. Zhao, “Watermark Attacks” [PowerPoint slides].
Retrieved from ENEE739M Multimedia Comm. & Info.
Security, 2002.

[14] Kapi, A.Y., Ibrahim, S. , "Fixed size encoding scheme
for software watermarking,", 2011 7th International
Conference on Information Assurance and Security
(IAS), pp.35-39, 5-8 Dec. 2011.

Author Biographies

Subariah Ibrahim received her B.Sc (Mathematic with Computer Science
Minor), 1980 from University of Nevada, Reno, Nevada, USA., Masters Degree
in M.Sc (Computer Science) in 1983 from Washington State University,
Pullman, Washington, USA and Ph.D. (Computer Science) from University
Teknologi Malaysia (2008). She was an EC-Council Network Security
Administrator in 2009.

Azyan Yusra Kapi received her B.Sc Computer Science (2009) from Universiti
Teknologi MARA, Shah Alam, Malaysia and Masters Degree in M. Sc.
(Computer Science) in 2011 from Universiti Teknologi Malaysia.

