
1/79

Mining Ultra-Large Datasets by

Kernel Machines
GPU Implementations and Novel Geometric Algorithms

Learning Algorithms and

Applications Laboratory (LAAL)

λα

αλ

V. Kecman, Q. Li, R. Strack

Presenter: Vojislav Kecman

 ISDA 2011
11th International Conference on Intelligent

Systems Design and Applications (ISDA)

November 22-24, 2011 - Córdoba, Spain

λα

αλ

http://www.uco.es/isda2011/
http://www.uco.es/isda2011/

2/79

Motivations for this talk

• There is no part of human activities left untouched by
both the need for and the desire to collect data today

• The consequences are - we are surrounded by, in
fact, we are immersed in an ocean of all kinds of
data (a.k.a. measurements, images, patterns, sounds,
samples, web pages, tunes, x-rays or ct images, etc.)

• Humans can't handle ultra-large data sets but,

• we must develop algorithms able to learn from
such datasets and to mine them efficiently

3/79

1st, let’s clarify the talk’s title

What is an ultra-large dataset?

• A concept of size is continuously changing with

both data producing capacities and advances in

hardware, but let’s define it (for today only):

• SMALL < ~ 10,000 samples

• MEDIUM < ~ 100,000 samples

• LARGE up to ~ 1million samples

• ULTRA-LARGE = ‘LARGER’ than LARGE
However, remind that the training doesn’t depend upon the size of

data only. We’ll see that some medium datasets are much tougher

nuts to crack than some ultralarge samples collections!!!

4/79

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8
x 10

6

20 40 60 80 100 120

0

1

2

3

4

5

x 10
4

Distribution of the dataset sizes on UCI repository site

20 40 60 80 100 120

0

Distribution of the dataset sizes on UCI repository site

Status as of Nov 2011

LARGE SETS

MEDIUM SETS

SMALL SETS

Number of

Samples

MEDIUM SETS

5/79

0 10 20 30 40 50 60
10

1

10
2

10
3

10
4

10
5

10
6 Distribution of the dataset sizes on LIBSVM data siteDistribution of the dataset sizes on LIBSVM data site

Status as of Nov 2011

LARGE SETS

MEDIUM SETS

SMALL SETS

Number of

Samples

6/79

Data sets variety

1 -0.66242 -0.03596

2 101.07 100.04

2 100.28 99.692

2 102.26 99.244

2 100.27 99.729

1 -1.2924 0.31328

1 1.4643 0.63647

2 100.24 99.294

Mars magnetic

field

7/79

Hence, our data is given as:

11 12 1 1

21 21 2 2

1 2

1

1
, , or

1

n

n

Class Regress

l l ln l

x x x y

x x x y

x x x y

X Y Y

1st data pair

lst data pair

8/79

• We are discussing single algorithms (i.e.,

approaches, methods) and

• not ensemble methods, such as bagging,

boosting, committee of trees, random forest

and/or nonlinear ensemble approaches,

• which all have been proposed to improve

performance of single models (NNs, SVMs, linear

models, trees, etc …) to get a STRONG classifier

• by combining multiple of weak (base) classifiers

Single Algorithms only, not

Ensemblings today

9/79

Living in an ocean of data produced on daily basis what

can, must, should humans do, right now?

a) stop collecting them

b) keep collecting the data and save them for future use

c) collect them and analyze whatever you can right now &

 avoid in this way drowning in data, while starving for knowledge

SOME TOPICS today

- Basic Model of Computational Intelligence

 (i.e., Machine Learning, i.e., Data Mining) is:

 The Sum of Weighted Basis Functions

- One model == Many (almost all the) models

-- LARGE DATA SETS & Some Contemporary Tools:

 New Hardware (GP GPUs) & New (Geometric) Approaches

10/79

y = -1 y = +1

y = -1 y = +1

Supervised
Semi-supervised

Unsupervised

This talk is all about the

supervised learning

Let’s first set the stage
there are three (3) machine learning (ML) settings

11/79

Supervised Learning is concerned by

solving two (out of three) classic

statistics problems:

Classification (Pattern Recognition)

Regression (Curve, Surface, Fitting,

i.e., Function Approximation)

one more statistics’ problem, we will not be discussing

here, is the Density Estimation Problem

12/79

Training Phase:

 w = g(x, y)

class label wi = yi

Test, i.e.

Application, Phase:

 yi = wi f(xi, w)

Y = This stage is a

CPU time

expensive one

Today, we’ll discuss classification i.e., pattern recognition, only

13/79

Classifying in 2 features space, we see the decision function.

When # of features > 2, we deal with HYPER-surfaces, that can’t be seen.

However, the algorithms ‘see’ in high-dim spaces and they will be the same.

Desired value y

Feature B

Feature A

+1

0

-1
d (x, w, b)

 Input plane

(x 1 , x 2)

Linear decision function

Input space of features

A linear model is same for any-dim case

y= Xw

14/79

-4 -3 -2 -1 0 1 2 3 4
-2

0

2

4

6

8

10

12

Separation curve (SC) obtained by Gaussian RBF - red
solid

, Margins - blue, Unknown SC yell
dashed

Feature 1, i.e., Input x
1

F
e
a
tu

re
 2

,
i.
e
.,

 I
n
p
u
t

x
2VERY OFTEN the decision

function and separating

boundary are

NONLINEAR

NL SVM decision function

15/79

Such complex decision functions

can be realized by many models,

notably polynomial approximations,

NNs, SVMs, decision trees, etc …

What are then the DIFFERENCES

and/or possibly SIMILARITIES

between these VARIOUSLY

NAMED ML TOOLS?

16/79

Some connections of

classic techniques such as Fourier

series & Polynomial approximations

with

NNs or/and SVMs

17/79

F(x) =

N

k

kk bothorkxborkxa
1

),cos(),sin(

BUT, what if we want to

learn the frequencies?

!!! NONLINEAR

LEARNING PROBLEM !!!

o = F(x)

V

is prescribed

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

4

n

Classic approximation techniques in NN graphical appearance

FOURIER SERIES

AMPLITUDES and PHASES of sine (cosine) waves are unknown,

but frequencies are known because

Mr. Joseph Fourier has selected frequencies for us -> they are

INTEGER multiplies of some pre-selected base frequency.

And the problem is LINEAR!!!

It is ‘same’

with POLYNOMIALS

w

18/79

Another classic approximation scheme is a

POLYNOMIAL SERIES

F(x) xi

N

i

iw
0

o = F(x)

w

vji wj

+1

y1

y2

yj

yj+1

yJ

x

1

2

3

4

5

V

is prescribed

With the prescribed

(integer) exponents

this is again a LINEAR

APPROXIMATION

SCHEME. Linear in

terms of parameters to

learn and not in terms

of the resulting

approximation

function. F(x) is NL

function for i > 1.

19/79

The two ‘novel’ learning machines in regression

i.e., in classification (pattern recognition) are

SVMs or NNs

(however remember, there are other models too).

WHAT are DIFFERENCES and SIMILARITIES?

WHATCH CAREFULLY NOW !!!

20/79

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

This is a Neural Network,

w j j j jj

J
 (, ,)x c

 1
F(x) =

21/79

and, this is a Support Vector Machine.

AND AGAIN !!!

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

w j j j jj

J
 (, ,)x c

 1
F(x) =

22/79

This is a Neural Network,

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

w j j j jj

J
 (, ,)x c

 1
F(x) =

23/79

and, this is a Support Vector Machine.

There is no difference

in a structure i.e., in a

representational capacity.

However, there is an important

difference in LEARNING.

o = F(x)

x1

xi

xn

V w

vji wj

+1

y1

 y2

 yj

 yj+1

 yJ

w j j j jj

J
 (, ,)x c

 1
F(x) =

24/79

Where then the

BASIC DIFFERENCES between

NNs and SVMs

(in fact among all the other various ML models)

are coming from?

25/79

Well ! There are two fundamental

pieces in any ML modeling

• They are the questions of:

• the FORM

 and

• the NORM

26/79

NORM

• covers – the type of the cost, i.e., merit, i.e.,

loss, i.e., fitness, i.e., objective, function which

is minimized over the parameters of interest

(here, we call them weights)

FORM

• covers – the type of the model and in particular

the type of the kernel (SVM), i.e., activation

(NN), i.e., basis (RBF), i.e., membership (FL)

function used

27/79

• ‘All’ our models in ML are ‘same’ i.e. they are the

SUM OF THE WEIGHTED BASIS FUNCTIONS

FORM

1
() (, ,)

J

j j j jj
o f w

 x x c

Hence,

ONE MODEL = MANY MODELS

Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG,

MPEG, Fuzzy Logic models, …, many others … they ALL are

Hyperparameters to be found during

the learning (training) phase

28/79

• Basically, we use primarily (only) two NORMs (cost
functions) in ML which are the

• MINIMIZATION of the SUM OF ERROR SQUARES in
the OUTPUT space (linear standard classifier, FFT,
JPEG, MPEG, MLP NN and RBF NN) – L2 norm

 and the

• MAXIMIZATION of the MARGIN in the INPUT space
expressed as a MINIMIZATION of the SUM OF
WEIGHTS SQUARES (SVMs)

(a variant of both may be the L1 norm or some composite norm)

NORM

29/79

Norms (Loss Functions) of NNs and SVMs

 A classic multilayer perceptron (MLP),

 FFT, polynomial models

 Regularization (RBF) NN

 Support Vector Machines

In the last expression the SRM principle uses the VC dimension h

(defining model capacity) as a controlling parameter for minimizing E

2

1 1

|| || (,)
P P

i i

i i
Capacity of

machineClossenes to
data

E L f L h l

 P

E d f i i

Closeness to data
i

P

 ((,)) x w
2

1

E d f f i i

Closeness to data Smoothness i

P

 ((,)) | | | | x w P
2 2

1

30/79

SUPPORT VECTOR MACHINE

is a MAXIMAL MARGIN CLASSIFIER which

• creates separating hyperplane with the maximal geometric margin

• WHY maximal margin?

Consider two linearly separable classes below. Two perfect separation

boundaries of two different decision functions are shown

Class 1, y = +1

Class 2, y = -1 Class 2, y = -1

Class 1, y = +1

Small

margin

Large

margin

x1 x1

x2 x2

Separating lines, i.e.,

boundaries, i.e.,

‘hyperplanes’

Thus, the larger the margin, the smaller the probability of misclassification!

31/79

A gentle SVMs history graph from the ‘simple’ linear case to the

more complex ones!

• Linear Maximal Margin Classifier for Linearly

 Separable Data - no samples overlapping

 (late 1960-ties and early 70-ties).

• Nonlinear Classifier

• Linear Soft Margin Classifier

 for Overlapping Classes.

• Regression by SV Machines that

can be both linear and nonlinear!

(1995)

(1992)

(1996)

Vapnik & Chervonenkis

Boser & Gyon & Vapnik

Cortes & Vapnik

Drucker & Burges & Kaufman,& Smola & Vapnik

32/79

The margin will be maximized by solving QP problem

minimize

J = wT w = || w ||2= w1
2+w2

2+ …+wn
2

subject to constraints

 yi[w
T xi + b] 1, i = 1, n

This classic QP problem with constraints ends in

forming and solving a primal and dual Lagrangian

Dual Lagrangians for both (regression and

classification) are given on the next slide

Note that # of constraining inequalities = # of training data l

Margin

maximization!

Correct

classification!

33/79

SVMs Linear Classification Learning (Training) Setting

α
xx max

11 1

T

2
1

d

N

i
i

N

i

N

j
jijiji yyL

0

0

1

N

i
ii

i

y

C

 Ni ,,1

Dual Problem:

for s.t.

α
xx max)()())((

111 1

T

2
1

d

i

N

i
ii

N

i
ii

N

i

N

j
jijjii yL

Cii ,0 Ni ,,1

0)(
1

N

i
ii

for

Dual

Problem:

s.t.

SVMs Linear Regression Learning (Training) Setting

1

() *
N

i i T

i
i i i

y
f b

x x xfinal solutions as:

classification

regression

1
2

() T T

dL α α Kα f αor, in a matrix

notation
which has the

(N, N) matrix

34/79

Nonlinear SVMs
)(1 x

)(2 x

)(3 x

1x

2x

y

 Mapping Linear SVM

)()(),(T
yΦxΦyx kKernel-Function:

New at NL SVM: • Scalar product is replaced by the Kernel-Function.

• Kernel-Function is usually positive definite.

• Support Vectors Representation of an NL SVM is:

1

() (,)
N

i i

i
i i i

y
f k

x x x

classification

regression

+ b

35/79

Some SVMs’ constructive problems

i) Kernel (Hessian) matrix K is both DENSE & VERY badly conditioned, but

ii) in a batch mode, SVM training may work fine for not too large datasets.

However, with the number of data points increasing (say N > 5,000) the

difficulties with a standard (batch) method show up.

A training set of 50,000 examples amounts to a kernel (Hessian) matrix K

with 2.5*109 (2.5 billion) elements. Using an 8-byte floating-point

representation we need 20,000 Megabytes = 20 Gigabytes of memory while

1 million examples asks for 8 Terrabytes of memory for storing K. This

cannot be fit into memory of present standard computers.

The way to go is a DECOMPOSITION

• Vapnik (1995) proposed the chunking method

• Osuna, Girosi (1997) present another efficient decomposition method.

•Platt (1997) proposed the sequential minimal optimization (SMO) (it works with

2 data points at the time) which became the working horse of SVM learning.

The newest Iterative Single Data Algorithm (ISDA) - Kecman, Vogt, Huang,

2003; Huang, Kecman, 2004 - seems to be the fastest for a huge data sets at

the moment – check: Yottamine.com

36/79

Problem Size & QP Solving Algorithms*

small

Size of the Problem

medium huge

Gradient Projection

Interior Point Active Set Working Set

Memory 2~ N Memory
2~ SVecsN Memory ~ N

* Graph by M. Vogt

Original training of SVM is not scalable !?!

• QP solving needs O(n2) time and O(n2) memory

37/79

Various Solution Methods Possible:

– Interior-Point: precise, batch, not suitable for huge data sets.

– Active-Set: robust, precise, maybe slow (?), memory prop. to the # of SVecs.

– Working-Set for huge data sets, iterative (chunking), SMO or ISDA -> now

 implemented on the Yottamine.com site)

Available Software:

– Interior-Point: universal-routines LOQO, CPLEX, MOSEK, MATLAB’s QP solver, ...

– Working-Set: implemented in SVMlight, mySVM, SVMTorch, (Hero-SVMs?) ...

 SMO, 2 datapoints only, implemented in LibSVM software

 ISDA, 1 datapoint only (our algorithm implemented on

 Yottamine.com cloud)

Solving the SVM QP-Problems

Matrix formulation: maximize 1
2

() T T

dL α α Kα f α
*

0 , , 1, ,i i C i l subject to 1)

and 2) 1 equality constraint if working with bias b

38/79

Recapitulations till now:

• ‘All’ ML models are of the same form i.e.,

they are Sum-of-Weighted-Functions

• The most used ones minimize either sum-

of-error-squares, or maximize the margin

between classes

• The later ones are the most suitable for

LARGE data sets (we’ll comment this

soon) and their learning amounts to

Solving QP Problem with Constraints

39/79

Finally, we have arrived at the

LARGE DATA SETS!

How to handle them?

What algorithm is suitable?

What hardware i.e. software

solution fits them the best?

40/79

As of today, SVMs only can successfully deal

with (ULTRA)LARGE Datasets. SVMs only!

• How comes? What about the other ML models? Why
is it this way?

• Well, it follows from the SVMs’ learning algorithm
which is solving the QP problem with N inequality
constraints and 1 equality constraint, where the
former

• IMPOSE the SPARSENESS ONTO THE SOLUTION!

• This then in turn, makes the training phase
feasible and expresses the model in terms of a
small number of the so-called Support Vectors!

Sorry for such a bold claim, but the explanations below may help to understand it!

41/79

There are few possibilities to learn

from ultra-large data sets by SVMs

* parallelize the existing QP solvers

** implement ‘novel’ parallel QP solvers

*** use GPUs i.e., manycore machines

****change the SVMs algorithm through

 a ‘novel’ geometry based insights =

 hulls and spheres (balls) approaches

42/79

Classic Parallelization

• There was a series of various attempts to
parallelize SVMs algorithms on super-
computers, clusters and grid machines starting
from ~ 2003 and lasting till today.

• Table of examples is on the next 2 slides

 - the NEC Labs’ patented cascade SVM
 parallelization approach (Graf et al &
 Vapnik, 2006) is not forgotten in the next
 table - check it at NIPS 2004. It belongs to
 the item *parallelize the existing QP solvers,

 from previous slide)

43/79

Author

Processor

Algorithm

Training

Speed up

Testing

Speed up

2003, Zanni

MPI

(Cray T3E, 32

processor)

VPDT

variable projection

decomposition

technique

1.8 -6.1

(2 - 16 processor)
N/A

2005, Serafini and

Zanni Cluster

PGPDT

A Parallel Gradient

Projection-based

Decomposition

Technique for

Support Vector

Machines

5.2

(8 processor / single

processor)

N/A

2006, Cao et al.

MPI

(Cluster of multiple

CPUs)

 PSMO

Parallel SMO

93 (over SVM and

LIBSVM)

(32 Processor)

N/A

2006, Serafini and

Zanni
Cluster

PGPDT

A Parallel Gradient

Projection-based

Decomposition

Technique for

Support Vector

Machines

7.3 MNIST

12.8 Cover test

(16 processor / single

processor)

2 - 25 KDDCUP

(24 - 32 processor /

single processor)

N/A

2007, Chu et al.
Cluster (Map-

Reduce)
SMO

1.6 - 1.96

(2 core/1 core)
N/A

2007, Dominik

Burgger

Kepler Cluster

(Every node has

two cores)

(MPI)

πSVM

Extension of

LIBSVM

3.8 - 16

(LIBSVM)
N/A

44/79

Author Processor Algorithm Training

Speed up

Testing

Speed up

2008 , Thanh-Nghi

Do et al.

Nvidia GeForce

8800 GTX

 LS-SVM

Extended Least

Squares SVM

47 - 100

(over LIBSVM on

CPU)

N/A

2008, Catanzaro et

al.

Nvidia GeForce

8800 GTX

GPU, single

precision

SMO

9-35 (GPU Adaptive

over LIBSVM)

81-135 (GPU over

LIBSVM)

5-24 (GPU over

CPU)

N/A

2009, Carpenter
NVIDIA GTX 260

GPU

SMO (cuSVM)

mixed precision

algorithm

17-32 (over

LIBSVM)

22-172 (normal

CPU)

2009, Harvey 2 GPU GPUSVM
89 - 263

(LIBSVM)
N/A

2009, Meligy
Grid Based

(C and MPI)

DSVM

(Distributed SVM)

PSVM

(parallel of Support

Vector Sector

Machine)

not implemented N/A

2009, Woodsend

Hybrid

MPI/OpenMP

Cluster (quad-core)

OOPS

(Object-Oriented

Parallel Solver)

2.2 - 2066 (Milde)

43 - 125 (PSVM)

94 - 206 (PGPDT)

N/A

2010, Lopez et al.
NVIDIA Tesla C1060

GeForce 8800 GT

P2SMO

Parallel-Parallel

SMO

3 - 57 (Training)

3 - 112

(Classification)

N/A

45/79

SVMs code on GPUs

developed at VCU

Tesla card S1060 (first series)

8 Tesla GPUs in 4U server

46/79

GPUSVM Experimental Results for Benchmark Datasets

• Performance comparisons between LIBSVM and GPUSVM

on both accuracy and speed will be shown on next 8 slides.

• Accuracy comparison:

– Small datasets: Accuracies are shown for training sets.

– Medium datasets: Accuracies are shown for both training and

testing sets.

– Large datasets: Accuracies are shown for testing sets.

• Speed comparison:

– Small datasets: The training time is too trivial to be shown.

– Medium/Large datasets: The training /testing time are shown for

standard LIBSVM (using Xeon 1-core), OpenMP enabled

LIBSVM (using Xeon 12-core) and GPUSVM (using Tesla

C2070).

47/79

GPUSVM Benchmark Datasets for

Hyperparameters C and
Scale Dataset # of training

data

of testing

data

of

features

of

classes
C

small

glass 214 N/A 9 6 512 2

iris 150 N/A 4 3 16 0.5

wine 178 N/A 13 3 1 0.25

heart 270 N/A 13 2 0.5 0.0625

sonar 208 N/A 60 2 4 0.125

breast-

cancer

683 N/A 10 2 0.25 0.125

medium

adult 32,561 16,281 123 2 1 0.0625

usps 7,291 2,007 256 10 128 0.015625

letter 15,000 5,000 16 26 16 8

shuttle 43,500 14,500 9 7 1 1

web 49,749 14,951 300 2 64 8

mnist 60,000 10,000 780 10 16 0.003096

large

usps-ext 266,079 75,383 675 2 1 0.03125

covtype 500,000 81,012 54 7 1 1

face-ext 489,410 24,045 361 2 0.001 1

48/79

GPUSVM & LIBSVM Accuracy Performance Comparisons

Dataset SVM
Training

accuracy

of

SVs

glass
LIBSVM 98.5981% 133

GPUSVM 98.1308% 144

iris
LIBSVM 98% 25

GPUSVM 98% 27

wine
LIBSVM 99.4382% 68

GPUSVM 99.4383% 75

heart
LIBSVM 85.1852% 146

GPUSVM 85.1852% 146

sonar
LIBSVM 100% 150

GPUSVM 100% 150

breast-

cancer

LIBSVM 97.2182% 91

GPUSVM 97.2182% 91

Dataset SVM
Training

accuracy

Testing

accuracy

of

SVs

adult
LIBSVM 85.7928% 85.0132% 11647

GPUSVM 85.7928% 85.0193% 11587

usps
LIBSVM 99.9863% 95.6153% 1785

GPUSVM 99.9863% 95.715% 1923

letter
LIBSVM 100% 96.82% 10726

GPUSVM 99.8467% 97.38% 11936

shuttle
LIBSVM 99.5149% 99.6069% 3109

GPUSVM 99.4736% 99.5655% 3667

web
LIBSVM 99.4553% 99.4515% 35231

GPUSVM 99.4553% 99.4515% 35220

mnist
LIBSVM 99.5917% 98.03% 9738

GPUSVM 99.4617% 98.27% 12919

Small datasets Medium datasets

49/79

GPUSVM &LIBSVM Accuracy Performance Comparisons

Dataset SVM Testing accuracy # of SVs

usps-ext

266,079

LIBSVM 99.2332% 39570

GPUSVM 99.2332% 38598

Covtype

500,000

LIBSVM 80.5028% 246444

GPUSVM 80.3362% 267373

face-ext

489,410

LIBSVM 98.037% 52488

GPUSVM 98.037% 34992

Large datasets

50/79

GPUSVM & LIBSVM Speed Performance Comparisons

Dataset SVM Processor Training time Speedup Testing time Speedup

Adult

32,561

LIBSVM
Xeon 1-core 60.634s 1x 20.273s 1x

Xeon 12-core 8.998s 6.7386x 2.216s 9.1485x

GPUSVM Tesla C2070 7.636s 7.9405x 0.649s 31.2373x

Usps

7,291

LIBSVM
Xeon 1-core 4.901s 1x 2.113s 1x

Xeon 12-core 1.331s 3.6822x 0.446s 4.7377x

GPUSVM Tesla C2070 2.158s 2.2711x 0.081s 26.0864x

Letter

15,000

LIBSVM
Xeon 1-core 37.768s 1x 4.666s 1x

Xeon 12-core 11.902s 3.1712x 1.88s 2.4819x

GPUSVM Tesla C2070 10.554s 3.5785x 0.445s 10.4854x

Shuttle

43.500

LIBSVM
Xeon 1-core 9.379s 1x 2.402s 1x

Xeon 12-core 2.047s 4.5818x 0.642s 3.7414x

GPUSVM Tesla C2070 2.238s 4.1908x 0.526s 4.5665x

Web

49,749

LIBSVM
Xeon 1-core 1450.933s 1x 59.278s 1x

Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x

GPUSVM Tesla C2070 71.291s 20.3523x 1.217s 48.7083x

Mnist

60,000

LIBSVM
Xeon 1-core 256.579s 1x 86.559s 1x

Xeon 12-core 64.04s 4.0065x 10.183s 8.5003x

GPUSVM Tesla C2070 39.552s 6.4871x 1.124s 77.0098x

Medium datasets

51/79

GPUSVM & LIBSVM Speed Performance Comparisons

Dataset SVM Processor Training time Speedup Testing time Speedup

usps-ext

266,079

LIBSVM
Xeon 1-core 1511.9m 1x 190.7m 1x

Xeon 12-core 66.4m 22.8x 8.4m 22.7x

GPUSVM TeslaC2070 8.4m 180x 0.5m 381.4x

Covtype

500,000

LIBSVM
Xeon 1-core 1347.7m 1x 198m 1x

Xeon 12-core 59m 22.84x 8.7m 22.76x

GPUSVM TeslaC2070 19.4m 69.5x 0.7m 282.9x

face-ext

489,410

LIBSVM
Xeon 1-core 6522.8m 1x 195m 1x

Xeon 12-core 286.5m 22.77x 8.5m 22.9x

GPUSVM TeslaC2070 5.3m 1230.7x 0.3m 650x

Large datasets

52/79

Graph for training time comparisons

between GPUSVM and LIBSVM

Large datasets
Note the logarithmic scale here. Thus, we are talking about the ORDER OF MAGNITUDES SPEED UP.

53/79

GPUSVM & LIBSVM Performance Comparison Summary

• Accuracy performance comparisons:

– GPUSVM is as accurate as LIBSVM. Both use same working
set technique (SMO) for solving QP problems.

– GPUSVM uses single precision floating point and LIBSVM uses

double precision floating point. (This causes the slight difference

between the total number of support vectors acquired through

the learning phase and their corresponding alpha values. No

effects on the accuracy whatsoever!)

– GPUSVM uses OvA for multiclass problems while LIBSVM uses
OvO. This also causes a tiny accuracy performance differences.

• Speed performance comparisons:

– LIBSVM can be accelerated by enabling the built-in OpenMP

feature which utilizes the full power of multi-core CPU.

– GPUSVM has close performance on medium datasets

compared to LIBSVM with OpenMP in training phase. However,

GPUSVM is always faster than OpenMP enabled LIBSVM in

testing phase.

– GPUSVM shows superior performance on large datasets

compared to LIBSVM with OpenMP. It achieved up to three

orders of magnitudes speed improvements on some datasets

compared to standard LIBSVM.

54/79

Now, let’s move from the

accelerations based

primarily on hardware to the

speeding up by a ‘new’,

geometry inspired,

algorithm(s) i.e., software

55/79

22 more slides to go!

I am enjoying it till now,
indeed !

What about you ?

56/79

The ‘novel’ approaches,

seemingly promising for

(ultra)large datasets, are

based on geometric

insights disguised in the

shapes of hulls and

spheres (balls)

 Convex Hulls

 Core (Ball) Vector Machines

 Sphere Vector Machines

We’ve played with hulls,

and we abandoned them for

now, but the basic idea is

SVM - Geometric Approaches

SVMs as the Reduced Convex Hulls

-find two closest points belonging to the

 two Convex Hulls

Reduced Convex Hulls

•Can be solved using existing algorithms:

– Closest Point Problem
• Gilbert's algorithm

– Nearest Point Problem

•Mitchell-Dem'yanov-Malozemov
• Schlesinger-Kozinec

●Non-separable problems can be solved using
Reduced Convex Hulls

●Usually slower than SMO implementations
 and thus put aside for now

60/79

Core i.e., Ball, Vector Machines

•Solving minimal enclosing ball problem

•is equivalent to solving a modified L2 SVM

•in a feature space defined by kernel

61/79

Core Vector Machines

At each iteration:

- one violating point is added to the core-set

- Minimum Enclosing Ball problem is solved for all points

belonging to the core-set (using SMO algorithm)

62/79

Ball Vector Machines

At each iteration:

- instead of solving entire QP problem just one update is

 performed - ball is shifted towards the max violating point

63/79

Enclosing Sphere Machines (ESM)

Our approach
At each iteration two vectors are found:
- one that violates “ball enclosing” conditions
- one that violates KKT conditions:

and ball is shifted along the line joining these two vectors

64/79

Now only, we present results of
extremely extensive comparisons of
one of the most powerful & possibly the

most used off-shelf SVM software
LIBSVM (both L1 & L2 models) vs. the
last two geometric approaches (balls

and spheres) for training SVMs,

in a very strict

DOUBLE (NESTED) k-fold CROSS
VALIDATION i.e. RESAMPLING

experiment

65/79

Remind!

k-fold CROSS VALIDATION is for

MODEL (i.e., its HYPERPARAMETERS)

SELECTION

while a

DOUBLE (NESTED) k-fold CROSS

VALIDATION i.e., RESAMPLING is for

MODELS COMPARISONS

66/79

Environment of our
experiments was as follows

SVMs with Gaussian kernel

Double 5x5 CV,

8x8 hyperparameters (C, σ)

which amounts to

1600 runs for each dataset

Runs for each dataset have

been performed on 5

Xeon E5520 2.3 GHz CPUs

Training time is then

summed up i.e., given as a

single CPU time needed.

67/79

Comparisons results for datasets below

Data set
Number of

classes

Number of

attributes

Number of

samples

optdigits 10 64 5,620

satimage 6 36 6,435

usps 10 256 9,298

pendigits 10 16 10,992

reuters 2 8,315 11,069

letter 26 16 20,000

adult 2 123 48,842

w3a 2 300 49,749

shuttle 7 7 58,000

web 2 300 64,700

ijcnn1 2 22 141,691

intrusion 2 127 5,209,460

S

M

L

UL

68/79

Learning time - S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000

69/79

Accuracy - S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000

70/79

Ratio of number of SVs
 S & M data sets

5,620 6,435 9,298 10,992 11,069 20,000 9,298 20,000 9,298

71/79

Learning time – M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only

5 M sec

4 M sec

3 M sec

2 M sec

1 M sec

52 days is here ~ 2 MONTHS which is huge for even the most patient researchers

More than 1 MONTH is here, which is also huge for even the most patient researchers

Compare these times

and check the

statement on slide 4 !

72/79

Accuracy - M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only

73/79

Ratio of number of SVs
 M & L & UL data sets

48,842 49,749 58,000 64,700 141,691 5,209,460

74/79

Multithreading by OpenMP*
A speedup for 12 threads

48,842 58,000 64,700 20,000 9,298 70,000

* Open Multi-Processing

75/79

Thus, sphere SVMs seem to offer both

a capacity to handle, and significant

accelerations for, both HARD (not

necessarily UL) and ULTRALARGE

datasets (over 1 mil samples).

The very next (we believe a feasible)

step may well be implementing spheres

on GP GPUs speeding them even more

76/79

2 4 6 8 10 12

0.5

1

1.5

2

2.5

3

x 10
4

S
p
e
e

d
u

p
 R

a
ti
o
 L

 /
 N

L

Speedup Ratio L / NL

2 4 6 8 10 12

-5

0

5

10

15

20

25

30

35

A
c
c
u

ra
c
y
 D

if
fe

re
n
c

e

Accuracy Difference NL - L

Data set

1 optdigits

2 satimage

3 usps

4 pendigits

5 reuters

6 letter

7 adult

8 w3a

9 shuttle

10 web 11

ijcnn1 12

intrusion

of data

1 - 3,823

2 - 4,435

3 - 7,291

4 - 7,494

5 - 7,770

6 - 15,000 M

7 - 32,561 M

8 - 4,912

9 - 43,500 M

10 - 49,749 M

11 - 49,990 M

12 - 4,898,431 UL

The Last But Not the Least

Always Run Linear SVM First
Here, we run our LINEARSVM

77/79

It’s no time (yet) for CONCLUSIONS on the

topic of learning from HUGE datasets, except that

• An ever-increasing number of data samples
requires rethinking about how to approach the
machine learning tasks

• The very rethinking must include advances in
both HARDWARE and ALGORITHMS

• GPU manycore processors are the first
obvious choice for the hardware right now

• The next good option is to use some ideas from
the geometry

• Our spheres algorithm for training SVMs have
been successfully implemented and presented

78/79

Thanks for both being patient

and having stamina
•Q

–U
•E

– S
» T T T T T T T T T T T T T T >

– I

•O

–N

•S
 PLEASE !!!

