
1/79 

Mining Ultra-Large Datasets by 

Kernel Machines 
GPU Implementations and Novel Geometric Algorithms 

 

Learning Algorithms and  

Applications Laboratory (LAAL) 

λα 

αλ 
 

V. Kecman, Q. Li, R. Strack 

Presenter: Vojislav Kecman 

 ISDA 2011 
11th International Conference on Intelligent 

Systems Design and Applications (ISDA)  

November 22-24, 2011 - Córdoba, Spain 

λα 

αλ 
 

http://www.uco.es/isda2011/
http://www.uco.es/isda2011/


2/79 

Motivations for this talk 

• There is no part of human activities left untouched by 
both the need for and the desire to collect data today 
 

• The consequences are - we are surrounded by, in 
fact, we are immersed in an ocean of all kinds of 
data (a.k.a. measurements, images, patterns, sounds, 
samples, web pages, tunes, x-rays or ct images, etc.)  
 

  
 

• Humans can't handle ultra-large data sets but,  
 

• we must develop algorithms able to learn from 
such datasets and to mine them efficiently 
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1st, let’s clarify the talk’s title 

What is an ultra-large dataset? 

• A concept of size is continuously changing with 

both data producing capacities and advances in 

hardware, but let’s define it (for today only): 
 

• SMALL   <   ~   10,000 samples 

• MEDIUM  <   ~ 100,000 samples 

• LARGE     up to  ~ 1million  samples 

• ULTRA-LARGE = ‘LARGER’ than LARGE  
However, remind that the training doesn’t depend upon the size of 

data only. We’ll see that some medium datasets are much tougher 

nuts to crack than some ultralarge samples collections!!! 
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Data sets variety 

1 -0.66242 -0.03596 

2 101.07 100.04 

2 100.28 99.692 

2 102.26 99.244 

2 100.27 99.729 

1 -1.2924 0.31328 

1 1.4643 0.63647 

2 100.24 99.294 

Mars magnetic 

field 
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Hence, our data is given as: 
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• We are discussing single algorithms (i.e., 

approaches, methods) and 

• not ensemble methods, such as bagging, 

boosting, committee of trees, random forest 

and/or nonlinear ensemble approaches,  

• which all have been proposed to improve 

performance of single models (NNs, SVMs, linear 

models, trees, etc …) to get a STRONG classifier 

• by combining multiple of weak (base) classifiers 

Single Algorithms only, not 

Ensemblings today 
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Living in an ocean of data produced on daily basis what 

can, must, should humans do, right now? 
 

a) stop collecting them 

b) keep collecting the data and save them for future use 

c) collect them and analyze whatever you can right now   & 

   avoid in this way drowning in data, while starving for knowledge 

 

SOME TOPICS today 
 

- Basic Model of Computational Intelligence                 

  (i.e., Machine Learning, i.e., Data Mining) is:  
 

 The Sum of Weighted Basis Functions 
 

- One model == Many (almost all the) models 
 

-- LARGE DATA SETS & Some Contemporary Tools:   

 New Hardware (GP GPUs) & New (Geometric) Approaches 
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y = -1 y = +1 

y = -1 y = +1 

Supervised 
Semi-supervised 

Unsupervised 

This talk is all about the 

supervised learning 

Let’s first set the stage 
there are three (3) machine learning (ML) settings 
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Supervised Learning is concerned by 

solving two (out of three) classic 

statistics problems: 

 

Classification (Pattern Recognition) 

 

Regression (Curve, Surface, Fitting, 

i.e., Function Approximation) 

 
one more statistics’ problem, we will not be discussing 

here, is the Density Estimation Problem 
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Training Phase: 

    w = g(x, y) 

class label  wi = yi 

 

 
 

Test, i.e. 

Application, Phase: 

 yi = wi  f(xi, w) 

 

 

Y = This stage is a 

CPU time 

expensive one 

Today, we’ll discuss classification i.e., pattern recognition, only 
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Classifying in 2 features space, we see the decision function.         

When # of features > 2, we deal with HYPER-surfaces, that can’t be seen. 

However, the algorithms ‘see’ in high-dim spaces and they will be the same. 

Desired value y  

Feature B  

Feature A  

+1 

0 

-1 
d ( x, w,  b ) 

  Input plane 

( x 1 , x 2 ) 

Linear decision function 

Input space of features 

A linear  model is same for any-dim case 

y= Xw 
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Such complex decision functions 

can be realized by many models, 

notably polynomial approximations, 

NNs, SVMs, decision trees, etc … 

What are then the DIFFERENCES     

and/or possibly SIMILARITIES 

between these VARIOUSLY  

NAMED ML TOOLS? 
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Some connections of 
 

classic techniques such as Fourier 

series & Polynomial approximations  

with 

NNs or/and SVMs 
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F(x) =  


N

k

kk bothorkxborkxa
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),cos(),sin(

BUT, what if we want to 

learn the frequencies? 

!!!    NONLINEAR 

LEARNING PROBLEM   !!! 

 

o = F(x) 
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Classic approximation techniques in NN graphical appearance 

FOURIER SERIES 

AMPLITUDES and PHASES of sine (cosine) waves are unknown, 

but frequencies are known because 

Mr. Joseph Fourier has selected frequencies for us -> they are 

INTEGER multiplies of some pre-selected base frequency. 

And the problem is LINEAR!!! 

It is ‘same’  

with POLYNOMIALS  

w 
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Another classic approximation scheme is a  

POLYNOMIAL SERIES 

F(x)             xi    
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With the prescribed 

(integer) exponents 

this is again a LINEAR 

APPROXIMATION 

SCHEME. Linear in 

terms of parameters to 

learn and not in terms 

of the resulting 

approximation 

function. F(x) is NL 

function for i > 1. 
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The two ‘novel’ learning machines in regression 

i.e., in classification (pattern recognition) are  

SVMs or NNs 

(however remember, there are other models too). 

 

WHAT are DIFFERENCES and SIMILARITIES? 

WHATCH CAREFULLY NOW !!! 
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and, this is a Support Vector Machine. 

AND AGAIN !!! 

 

o = F(x) 
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This is a Neural Network, 

 

o = F(x) 
 

 

x1 

 

 

 

xi 

 

 

 

xn  
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and, this is a Support Vector Machine. 

There is no difference 

in a structure i.e., in a 

representational capacity. 

However, there is an important 

difference in LEARNING. 

 

o = F(x) 
 

 

x1 
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Where then the  

BASIC DIFFERENCES between  

NNs and SVMs 
 

(in fact among all the other various ML models) 
 

are coming from?  
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Well ! There are two fundamental 

pieces in any ML modeling  

• They are the questions of: 

 

• the FORM 

 

  and 

 

• the NORM 
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NORM 

• covers – the type of the cost, i.e., merit, i.e., 

loss, i.e., fitness, i.e., objective, function which 

is minimized over the parameters of interest 

(here, we call them weights)  

FORM 

• covers – the type of the model and in particular 

the type of the kernel (SVM), i.e., activation 

(NN), i.e., basis (RBF), i.e., membership (FL) 

function used 
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• ‘All’ our models in ML are ‘same’ i.e. they are the  

 

SUM OF THE WEIGHTED BASIS FUNCTIONS 

FORM 

1
( ) ( , , )

J

j j j jj
o f w 


  x x c

Hence,  

ONE MODEL = MANY MODELS 

Polynomial approximations, Fourier expansions, NN, SVMs, wavelets, JPEG, 

MPEG, Fuzzy Logic models, …, many others … they ALL are   

Hyperparameters to be found during 

the learning (training) phase 
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• Basically, we use primarily (only) two NORMs (cost 
functions) in ML which are the 

 

• MINIMIZATION of the SUM OF ERROR SQUARES in 
the OUTPUT space (linear standard classifier, FFT, 
JPEG, MPEG, MLP NN and RBF NN) – L2 norm 

 

  and the  

 

• MAXIMIZATION of the MARGIN in the INPUT space 
expressed as a MINIMIZATION of the SUM OF 
WEIGHTS SQUARES (SVMs) 
 

(a variant of both may be the L1 norm or some composite norm) 

NORM 
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Norms (Loss Functions) of NNs and SVMs 

 

    A classic multilayer perceptron (MLP), 

  FFT, polynomial models 

 

 

       Regularization (RBF) NN 

 

 

                         Support Vector Machines 

 

 

In the last expression the SRM principle uses the VC dimension h 

(defining model capacity) as a controlling parameter for minimizing E 
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SUPPORT VECTOR MACHINE 

is a MAXIMAL MARGIN CLASSIFIER which 

•  creates separating hyperplane with the maximal geometric margin 

• WHY maximal margin? 

Consider two linearly separable classes below. Two perfect separation 

boundaries of two different decision functions are shown 

Class 1, y = +1 

Class 2, y = -1 Class 2, y = -1 

Class 1, y = +1 

Small 

margin 

Large 

margin 

x1 x1 

x2 x2 

Separating lines, i.e., 

boundaries, i.e., 

‘hyperplanes’  

Thus, the larger the margin, the smaller the probability of misclassification! 
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A gentle SVMs history graph from the ‘simple’ linear case to the 

more complex ones!  

• Linear Maximal Margin Classifier for Linearly 

 Separable Data - no samples overlapping   

 (late 1960-ties and early 70-ties).  

 

• Nonlinear Classifier 

 

• Linear Soft Margin Classifier 

      for Overlapping Classes.  

 

• Regression by SV Machines that           

can be both linear and nonlinear!  

(1995) 

(1992) 

(1996) 

Vapnik & Chervonenkis 

Boser & Gyon & Vapnik 

Cortes & Vapnik 

Drucker & Burges & Kaufman,& Smola & Vapnik  
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The margin will be maximized by solving QP problem 

minimize 

J = wT w = || w ||2= w1
2+w2

2+ …+wn
2 

 

subject to constraints 

       yi[w
T xi + b]  1,   i = 1, n 

 

This classic QP problem with constraints ends in 

forming and solving a primal and dual Lagrangian 

Dual Lagrangians for both (regression and 

classification) are given on the next slide 

Note that # of constraining inequalities = # of training data l 

Margin 

maximization! 

Correct 

classification! 
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SVMs Linear Classification Learning (Training) Setting 
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Nonlinear SVMs 
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yΦxΦyx kKernel-Function: 

New at NL SVM: •  Scalar product is replaced by the Kernel-Function. 

•  Kernel-Function is usually positive definite. 

•  Support Vectors Representation of an NL SVM is: 
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Some SVMs’ constructive problems  
 

i)  Kernel (Hessian) matrix K is both DENSE & VERY badly conditioned, but 

ii) in a batch mode, SVM training may work fine for not too large datasets.  
 

However, with the number of data points increasing (say N > 5,000) the 

difficulties with a standard (batch) method show up.  
 

A training set of 50,000 examples amounts to a kernel (Hessian) matrix K 

with 2.5*109 (2.5 billion) elements. Using an 8-byte floating-point 

representation we need 20,000 Megabytes = 20 Gigabytes of memory while 

1 million examples asks for 8 Terrabytes of memory for storing K. This 

cannot be fit into memory of present standard computers.  
 

The way to go is a DECOMPOSITION 

• Vapnik (1995) proposed the chunking method  

• Osuna, Girosi (1997) present another efficient decomposition method.  

•Platt (1997) proposed the sequential minimal optimization (SMO) (it works with 

2 data points at the time) which became the working horse of SVM learning.  

The newest Iterative Single Data Algorithm (ISDA) - Kecman, Vogt, Huang, 

2003; Huang, Kecman, 2004 - seems to be the fastest for a huge data sets at 

the moment – check:    Yottamine.com 
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Problem Size & QP Solving Algorithms* 

small 

Size of the Problem 

medium huge 

Gradient Projection 

Interior Point Active Set Working Set 

Memory 2~ N Memory 
2~ SVecsN Memory ~ N

* Graph by M. Vogt 

Original training of SVM is not scalable !?! 

• QP solving needs O(n2) time and O(n2) memory 
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Various Solution Methods Possible: 

–  Interior-Point:          precise, batch, not suitable for huge data sets. 

–  Active-Set:          robust, precise, maybe slow (?), memory prop. to the # of SVecs. 

–  Working-Set            for huge data sets, iterative (chunking), SMO or ISDA -> now

                     implemented on the Yottamine.com site) 

Available Software: 
 

–  Interior-Point: universal-routines LOQO, CPLEX, MOSEK, MATLAB’s QP solver, ... 

–  Working-Set: implemented in SVMlight, mySVM, SVMTorch, (Hero-SVMs?) ... 

      SMO, 2 datapoints only, implemented in LibSVM software 

      ISDA, 1 datapoint only (our algorithm implemented on 

 Yottamine.com   cloud) 

Solving the SVM QP-Problems 

Matrix formulation: maximize 1
2

( ) T T

dL   α α Kα f α
*

0 , , 1, ,i i C i l   subject to    1) 

and             2) 1 equality constraint if working with bias b 
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Recapitulations till now: 

• ‘All’ ML models are of the same form i.e., 

they are          Sum-of-Weighted-Functions 

• The most used ones minimize either sum-

of-error-squares, or maximize the margin 

between classes 

• The later ones are the most suitable for 

LARGE data sets (we’ll comment this 

soon) and their learning amounts to 

Solving QP Problem with Constraints 
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Finally, we have arrived at the 

LARGE DATA SETS! 

 

How to handle them? 

What algorithm is suitable? 

What hardware i.e. software 

solution fits them the best? 
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As of today, SVMs only can successfully deal 

with (ULTRA)LARGE Datasets. SVMs only! 

• How comes? What about the other ML models? Why 
is it this way?  
 

• Well, it follows from the SVMs’ learning algorithm 
which is solving the QP problem with N inequality 
constraints and 1 equality constraint, where the 
former  
 

• IMPOSE the SPARSENESS ONTO THE SOLUTION! 
 

• This then in turn, makes the training phase 
feasible and expresses the model in terms of a 
small number of the so-called Support Vectors! 

Sorry for such a bold claim, but the explanations below may help to understand it! 
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There are few possibilities to learn 

from ultra-large data sets by SVMs 
 

* parallelize the existing QP solvers 
 

** implement ‘novel’ parallel QP solvers 
 

*** use GPUs i.e., manycore machines  
 

****change the SVMs algorithm through   

      a ‘novel’ geometry based insights =  

      hulls and spheres (balls) approaches 
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Classic Parallelization 

• There was a series of various attempts to 
parallelize SVMs algorithms on super-
computers, clusters and grid machines starting 
from ~ 2003 and lasting till today. 

 

• Table of examples is on the next 2 slides 

 -  the NEC Labs’ patented cascade SVM  
 parallelization approach (Graf et al & 
 Vapnik, 2006) is not forgotten in the next 
 table - check it at NIPS 2004. It belongs to 
 the item *parallelize the existing QP solvers, 

 from previous slide) 
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Author 
 

Processor 
 

Algorithm 

 

Training 

Speed up 

 

Testing 

Speed up 

2003, Zanni  

MPI   

(Cray T3E, 32 

processor) 

VPDT 

variable projection 

decomposition 

technique 

1.8 -6.1 

(2 - 16 processor) 
N/A 

2005, Serafini and 

Zanni Cluster 

PGPDT 

A Parallel Gradient 

Projection-based  

Decomposition 

Technique for  

Support Vector 

Machines 

5.2 

(8 processor / single 

processor) 

N/A 

2006, Cao et al. 

MPI   

(Cluster of multiple 

CPUs) 

 PSMO  

Parallel SMO 

93 (over SVM and 

LIBSVM) 

(32 Processor)  

N/A 

2006, Serafini and 

Zanni 
Cluster 

PGPDT 

A Parallel Gradient 

Projection-based  

Decomposition 

Technique for  

Support Vector 

Machines 

7.3 MNIST 

12.8 Cover test 

(16 processor / single 

processor) 

2 - 25 KDDCUP 

(24 - 32 processor / 

single processor) 

 

N/A 

2007, Chu et al. 
Cluster (Map-

Reduce) 
SMO 

1.6 - 1.96 

(2 core/1 core) 
N/A 

2007, Dominik 

Burgger  

Kepler Cluster  

(Every node has 

two cores) 

(MPI) 

πSVM  

Extension of 

LIBSVM 

3.8 - 16 

(LIBSVM) 
N/A 
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Author Processor Algorithm Training 

Speed up 

Testing 

Speed up 

2008 , Thanh-Nghi 

Do et al. 

Nvidia GeForce 

8800 GTX 

 LS-SVM 

Extended Least 

Squares SVM 

47 - 100 

(over LIBSVM on 

CPU) 

N/A 

2008, Catanzaro et 

al. 

Nvidia GeForce 

8800 GTX 

GPU, single 

precision 

SMO 

9-35 (GPU Adaptive 

over LIBSVM) 

81-135 (GPU over 

LIBSVM) 

5-24 (GPU over 

CPU) 

N/A 

2009, Carpenter 
NVIDIA GTX 260 

GPU 

SMO (cuSVM) 

mixed precision 

algorithm 

17-32 (over 

LIBSVM) 

22-172 (normal 

CPU) 

2009, Harvey 2 GPU GPUSVM 
89 - 263 

(LIBSVM) 
N/A 

2009, Meligy  
Grid Based  

(C and MPI) 

DSVM 

(Distributed SVM) 

PSVM 

(parallel of Support 

Vector Sector 

Machine) 

not implemented N/A 

2009, Woodsend  

Hybrid 

MPI/OpenMP 

Cluster (quad-core) 

OOPS  

(Object-Oriented 

Parallel Solver) 

2.2 - 2066 (Milde) 

43 - 125 (PSVM) 

94 - 206 (PGPDT) 

N/A 

2010, Lopez et al.  
NVIDIA Tesla C1060 

GeForce 8800 GT 

P2SMO 

Parallel-Parallel 

SMO 

3 - 57 (Training) 

3 - 112 

(Classification) 

N/A 
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SVMs code on GPUs  

developed at VCU 

Tesla card S1060 (first series) 

8 Tesla GPUs in 4U server 
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GPUSVM Experimental Results for Benchmark Datasets  

 

• Performance comparisons between LIBSVM and GPUSVM            

on both accuracy and speed will be shown on next 8 slides. 

 

• Accuracy comparison: 

– Small datasets: Accuracies are shown for training sets. 

– Medium datasets: Accuracies are shown for both training and 

testing sets. 

– Large datasets: Accuracies are shown for testing sets. 
 

 

 

• Speed comparison: 

– Small datasets: The training time is too trivial to be shown. 

– Medium/Large datasets: The training /testing time are shown for 

standard LIBSVM ( using Xeon 1-core), OpenMP enabled 

LIBSVM (using Xeon 12-core) and GPUSVM (using Tesla 

C2070). 
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GPUSVM Benchmark Datasets for 

Hyperparameters C and  
Scale Dataset # of training 

data 

# of testing 

data 

# of 

features 

# of 

classes 
C 

small 

glass 214 N/A 9 6 512 2 

iris 150 N/A 4 3 16 0.5 

wine 178 N/A 13 3 1 0.25 

heart 270 N/A 13 2 0.5 0.0625 

sonar 208 N/A 60 2 4 0.125 

breast-

cancer 

683 N/A 10 2 0.25 0.125 

medium 

adult 32,561 16,281 123 2 1 0.0625 

usps 7,291 2,007 256 10 128 0.015625 

letter 15,000 5,000 16 26 16 8 

shuttle 43,500 14,500 9 7 1 1 

web 49,749 14,951 300 2 64 8 

mnist 60,000 10,000 780 10 16 0.003096 

large 

usps-ext 266,079 75,383 675 2 1 0.03125 

covtype 500,000 81,012 54 7 1 1 

face-ext 489,410 24,045 361 2 0.001 1 
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GPUSVM & LIBSVM Accuracy Performance Comparisons 

Dataset SVM 
Training 

accuracy 

# of 

SVs 

glass 
LIBSVM 98.5981% 133 

GPUSVM 98.1308% 144 

iris 
LIBSVM 98% 25 

GPUSVM 98% 27 

wine 
LIBSVM 99.4382% 68 

GPUSVM 99.4383% 75 

heart 
LIBSVM 85.1852% 146 

GPUSVM 85.1852% 146 

sonar 
LIBSVM 100% 150 

GPUSVM 100% 150 

breast-

cancer 

LIBSVM 97.2182% 91 

GPUSVM 97.2182% 91 

Dataset SVM 
Training 

accuracy 

Testing 

accuracy 

# of 

SVs 

adult 
LIBSVM 85.7928% 85.0132% 11647 

GPUSVM 85.7928% 85.0193% 11587 

usps 
LIBSVM 99.9863% 95.6153% 1785 

GPUSVM 99.9863% 95.715% 1923 

letter 
LIBSVM 100% 96.82% 10726 

GPUSVM 99.8467% 97.38% 11936 

shuttle 
LIBSVM 99.5149% 99.6069% 3109 

GPUSVM 99.4736% 99.5655% 3667 

web 
LIBSVM 99.4553% 99.4515% 35231 

GPUSVM 99.4553% 99.4515% 35220 

mnist 
LIBSVM 99.5917% 98.03% 9738 

GPUSVM 99.4617% 98.27% 12919 

Small datasets Medium datasets 
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GPUSVM &LIBSVM Accuracy Performance Comparisons 

Dataset SVM Testing accuracy # of SVs 

usps-ext 

266,079 

LIBSVM 99.2332% 39570 

GPUSVM 99.2332% 38598 

Covtype 

500,000 

LIBSVM 80.5028% 246444 

GPUSVM 80.3362% 267373 

face-ext 

489,410 

LIBSVM 98.037% 52488 

GPUSVM 98.037% 34992 

Large datasets 
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GPUSVM & LIBSVM Speed Performance Comparisons 

Dataset SVM Processor Training time Speedup Testing time Speedup 

Adult 

32,561 

LIBSVM 
Xeon 1-core 60.634s 1x 20.273s 1x 

Xeon 12-core 8.998s 6.7386x 2.216s 9.1485x 

GPUSVM Tesla C2070 7.636s 7.9405x 0.649s 31.2373x 

Usps 

7,291 

LIBSVM 
Xeon 1-core 4.901s 1x 2.113s 1x 

Xeon 12-core 1.331s 3.6822x 0.446s 4.7377x 

GPUSVM Tesla C2070 2.158s 2.2711x 0.081s 26.0864x 

Letter 

15,000 

LIBSVM 
Xeon 1-core 37.768s 1x 4.666s 1x 

Xeon 12-core 11.902s 3.1712x 1.88s 2.4819x 

GPUSVM Tesla C2070 10.554s 3.5785x 0.445s 10.4854x 

Shuttle 

43.500 

LIBSVM 
Xeon 1-core 9.379s 1x 2.402s 1x 

Xeon 12-core 2.047s 4.5818x 0.642s 3.7414x 

GPUSVM Tesla C2070 2.238s 4.1908x 0.526s 4.5665x 

Web 

49,749 

LIBSVM 
Xeon 1-core 1450.933s 1x 59.278s 1x 

Xeon 12-core 199.784s 7.2625x 6.819s 8.6931x 

GPUSVM Tesla C2070 71.291s 20.3523x 1.217s 48.7083x 

Mnist 

60,000 

LIBSVM 
Xeon 1-core 256.579s 1x 86.559s 1x 

Xeon 12-core 64.04s 4.0065x 10.183s 8.5003x 

GPUSVM Tesla C2070 39.552s 6.4871x 1.124s 77.0098x 

Medium datasets 
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GPUSVM & LIBSVM Speed Performance Comparisons 

Dataset SVM Processor Training time Speedup Testing time Speedup 

usps-ext 

266,079 

LIBSVM 
Xeon 1-core 1511.9m 1x 190.7m 1x 

Xeon 12-core 66.4m 22.8x 8.4m 22.7x 

GPUSVM TeslaC2070 8.4m 180x 0.5m 381.4x 

Covtype 

500,000 

LIBSVM 
Xeon 1-core 1347.7m 1x 198m 1x 

Xeon 12-core 59m 22.84x 8.7m 22.76x 

GPUSVM TeslaC2070 19.4m 69.5x 0.7m 282.9x 

face-ext 

489,410 

LIBSVM 
Xeon 1-core 6522.8m 1x 195m 1x 

Xeon 12-core 286.5m 22.77x 8.5m 22.9x 

GPUSVM TeslaC2070 5.3m 1230.7x 0.3m 650x 

Large datasets 
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Graph for training time comparisons 

between GPUSVM and LIBSVM 

Large datasets 
Note the logarithmic scale here. Thus, we are talking about the ORDER OF MAGNITUDES SPEED UP. 
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GPUSVM & LIBSVM Performance Comparison Summary  

• Accuracy performance comparisons: 

– GPUSVM is as accurate as LIBSVM. Both use same working 
set technique (SMO) for solving QP problems. 

– GPUSVM uses single precision floating point and LIBSVM uses 

double precision floating point. (This causes the slight difference 

between the total number of support vectors acquired through 

the learning phase and their corresponding alpha values. No 

effects on the accuracy whatsoever!)    

– GPUSVM uses OvA for multiclass problems while LIBSVM uses 
OvO. This also causes a tiny accuracy performance differences. 
 

• Speed performance comparisons: 

– LIBSVM can be accelerated by enabling the built-in OpenMP 

feature which utilizes the full power of multi-core CPU. 

– GPUSVM has close performance on medium datasets 

compared to LIBSVM with OpenMP in training phase. However, 

GPUSVM is always faster than OpenMP enabled LIBSVM in 

testing phase. 

– GPUSVM shows superior performance on large datasets 

compared to LIBSVM with OpenMP. It achieved up to three 

orders of magnitudes speed improvements on some datasets 

compared to standard LIBSVM. 
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Now, let’s move from the 

accelerations based 

primarily on hardware to the 

speeding up by a ‘new’, 

geometry inspired, 

algorithm(s) i.e., software 
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22 more slides to go! 

I am enjoying it    till now, 
indeed !  

What about you ? 
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The ‘novel’ approaches, 

seemingly promising for 

(ultra)large datasets, are 

based on geometric 

insights disguised in the 

shapes of hulls and 

spheres (balls) 



 Convex Hulls 

 Core (Ball) Vector Machines 

 Sphere Vector Machines 

 

We’ve played with hulls, 

and we abandoned them for 

now, but the basic idea is  

SVM - Geometric Approaches 



SVMs as the Reduced Convex Hulls 

-find two closest points belonging to the       

 two Convex Hulls 



Reduced Convex Hulls 

•Can be solved using existing algorithms: 

– Closest Point Problem 
• Gilbert's algorithm 

– Nearest Point Problem 

•Mitchell-Dem'yanov-Malozemov 
• Schlesinger-Kozinec 

●Non-separable problems can be solved using 
Reduced Convex Hulls 

 

●Usually slower than SMO implementations 
          and thus put aside for now 
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Core i.e., Ball, Vector Machines 

•Solving minimal enclosing ball problem 

 
•is equivalent to solving a modified L2 SVM 

 

 

•in a feature space defined by kernel 
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Core Vector Machines 

At each iteration: 

- one violating point is added to the core-set 

- Minimum Enclosing Ball problem is solved for all points       

belonging to the core-set (using SMO algorithm) 
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Ball Vector Machines 

At each iteration: 

- instead of solving entire QP problem just one update is      

        performed - ball is shifted towards the max violating point 
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Enclosing Sphere Machines (ESM)         

Our approach 
At each iteration two vectors are found: 
- one that violates “ball enclosing” conditions 
- one that violates KKT conditions: 
 
 
 
and ball is shifted along the line joining these two vectors  
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Now only, we present results of 
extremely extensive comparisons of 
one of the most powerful & possibly the 

most used off-shelf SVM software 
LIBSVM (both L1 & L2 models) vs. the 
last two geometric approaches (balls 

and spheres) for training SVMs, 
 

in a very strict 
 

DOUBLE (NESTED) k-fold CROSS 
VALIDATION i.e. RESAMPLING 

experiment 
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Remind! 
 

 

k-fold CROSS VALIDATION is for 

MODEL (i.e., its HYPERPARAMETERS) 

SELECTION 
 

while a 
 

DOUBLE (NESTED) k-fold CROSS 

VALIDATION i.e., RESAMPLING is for 

MODELS COMPARISONS  
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Environment of our 
experiments was as follows 
 

SVMs with Gaussian kernel 

Double 5x5 CV,  

8x8  hyperparameters (C, σ) 

which amounts to 

1600 runs for each dataset 
 

Runs for each dataset have 

been performed on 5 

Xeon E5520 2.3 GHz CPUs 
 

Training time is then 

summed up i.e., given as a 

single CPU time needed. 
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Comparisons results for datasets below 

Data set 
Number of 

classes 

Number of 

attributes 

Number of 

samples 

optdigits 10 64 5,620 

satimage 6 36 6,435 

usps 10 256 9,298 

pendigits 10 16 10,992 

reuters 2 8,315 11,069 

letter 26 16 20,000 

adult 2 123 48,842 

w3a 2 300 49,749 

shuttle 7 7 58,000 

web 2 300 64,700 

ijcnn1 2 22 141,691 

intrusion 2 127 5,209,460 

 

S 

 

 

 

M 

 

 

L 

UL 
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Learning time - S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 
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Accuracy - S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 
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Ratio of number of SVs 
 S & M data sets 

5,620 6,435 9,298 10,992 11,069 20,000 9,298 20,000 9,298 
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Learning time – M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 

5 M sec 

4 M sec 

3 M sec 

2 M sec 

1 M sec 

52 days is here ~ 2 MONTHS which is huge for even the most patient researchers 

More than 1 MONTH is here, which is also huge for even the most patient researchers 

Compare these times 

and check the 

statement on slide 4 ! 
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Accuracy - M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 

Notice that both LIBSVMs were not able to finish the learning here. L1 LIBSVM needed 60h/1 iteration only 
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Ratio of number of SVs 
 M & L & UL data sets 

48,842 49,749 58,000 64,700 141,691 5,209,460 
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Multithreading by OpenMP* 
A speedup for 12 threads 

48,842 58,000 64,700 20,000 9,298 70,000 

*  Open Multi-Processing  
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Thus, sphere SVMs seem to offer both 

a capacity to handle, and significant 

accelerations for, both HARD (not 

necessarily UL) and ULTRALARGE 

datasets (over 1 mil samples). 
 

The very next (we believe a feasible) 

step may well be implementing spheres 

on GP GPUs speeding them even more 
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Data set 

1 optdigits   

2 satimage   

3 usps          

4 pendigits  

5 reuters      

6 letter         

7 adult          

8 w3a           

9 shuttle     

10 web       11 

ijcnn1    12  

intrusion 

# of data 

1 - 3,823 

2 - 4,435 

3 - 7,291 

4 - 7,494 

5 - 7,770 

6 - 15,000 M 

7 - 32,561 M 

8 - 4,912 

9 - 43,500 M 

10 - 49,749 M 

11 - 49,990 M 

12 - 4,898,431 UL 

The Last But Not the Least                         

Always Run Linear SVM First 
Here, we run our LINEARSVM 



77/79 

It’s no time (yet) for CONCLUSIONS on the 

topic of learning from HUGE datasets, except that  

• An ever-increasing number of data samples 
requires rethinking about how to approach the 
machine learning tasks 

• The very rethinking must include advances in 
both HARDWARE and ALGORITHMS 

• GPU manycore processors are the first 
obvious choice for the hardware right now 

• The next good option is to use some ideas from 
the geometry 

• Our spheres algorithm for training SVMs have 
been successfully implemented and presented 
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Thanks for both being patient  

and having stamina  
•Q 

–U 
•E 

– S 
» T T T T T T T T T T T T T T >  

– I 

•O 

–N 

•S 
   PLEASE !!! 


