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Córdoba (SP), Nov 24, 2011

KERMIT

Prof. dr. Bernard De Baets (KERMIT) Monotone but not boring Córdoba (SP), Nov 24, 2011 1 / 88



Starting observations

1 In many modelling problems, there exists a monotone relationship
between some of the input variables and the output variable

2 Monotonicity is a common property of evaluation and selection
procedures

3 This monotone relationship may not be fully present in the
observed input-output data due to data imperfections

4 Monotonicity is a global property in contrast to a local property
such as continuity

5 In case the monotonicity property applies, any violation of it is
simply unacceptable
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Soil erosion

Phenomenon: loss of soil by erosion increases with increasing slope angle
and decreasing soil coverage with vegetation
(Geoderma, Mitra et al., 1998)
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Citrus sudden death

Phenomenon: distance covered by the vector transmitting citrus sudden
death to sweet orange trees increases with increasing wind intensity
(Ecological Modelling, M. da Silva Peixoto et al., 2008)

IF N IS calmness THEN R IS very small
IF N IS breeze THEN R IS very small
IF N IS whiff THEN R IS small
IF N IS weak THEN R IS medium
IF N IS moderate THEN R IS medium
IF N IS fresh THEN R IS big
IF N IS very fresh THEN R IS big
IF N IS strong THEN R IS very big
IF N IS very strong THEN R IS very big

Increasing, smooth rule base
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Citrus sudden death
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Fuzzy rule-based model

Model characteristics:

m input variables Xℓ and a single output variable Y

rules of the form

Rs : IF X1 IS B1
j1,s

AND . . . AND Xm IS Bm
jm,s

THEN Y IS Ais

linguistic values Bℓ
jℓ,s

of Xℓ: trapezoidal; fuzzy partition

linguistic values Ais : trapezoidal; fuzzy partition (bounded domain)

natural ordering on the linguistic values of each variable
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1. Fuzzy rule-based modelling 1.1. Fuzzy rule bases

Fuzzy partition

A1 A2 . . . An-1 An

Y

A(y)
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lboutput
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Mamdani–Assilian fuzzy models

Observation

Mamdani–Assilian fuzzy models with a monotone rule base do not
necessarily result in a monotone input-output mapping

Monotone input-output behaviour

If the original rule base is complete and increasing, then the input-output
mapping can only be increasing in the following cases:

1 Center-of-Gravity defuzzification:

one input variable: basic t-norms TM, TP and TL

two or three input variables: TP and a smooth rule base

2 Mean-of-Maxima defuzzification:

one input variable: basic t-norms TM, TP and TL

two or more input variables: TM or TP, and a smooth rule base
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Implication-based fuzzy models

Cumulative modifiers:

at-least modifier: ATL(C )(x) = sup{C (t) | t ≤ x}

at-most modifier: ATM(C )(x) = sup{C (t) | t ≥ x}
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1. Fuzzy rule-based modelling 1.2. Monotone fuzzy rule-based models

Implication-based fuzzy models

Connectives: left-continuous t-norm and its residual implicator

Modified rule bases:

ATL/ATM rule base: applying ATL/ATM to all antecedents and
consequents

ATLM rule base: union of the above

Monotone input-output mapping

If the original rule base is increasing, then the input-output mapping is
increasing in the following cases:

1 ATL rule base and First-of-Maxima defuzzification

2 ATM rule base and Last-of-Maxima defuzzification

3 ATLM rule base and Mean-of-Maxima defuzzification
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1. Fuzzy rule-based modelling 1.3. References
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2. Multi-class classification
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2. Multi-class classification 2.1. Monotone classification

Toy example

Classification problem:

c1 c2 c3 class label

a1 − − + A
a2 + − − B
a3 − + + C
a4 + + − B

Monotone classification problem:

c1 c2 c3 evaluation

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.1. Monotone classification

Toy example

Monotone classification problem:

c1 c2 c3 evaluation

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate

a5 − + − Good
a6 + + + Moderate

Research question

How to produce guaranteed monotone classification results, even when
the set of learning examples is not monotone?
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2. Multi-class classification 2.1. Monotone classification

Multi-class classification

Problem: to attach labels from a finite set L to the elements of some
set of objects Ω

Each object a ∈ Ω is represented by a feature vector

a = (c1(a), c2(a), . . . , cn(a))

in the feature space X

Collection of learning examples: multiset

(S, d) ≡ {〈a, d(a)〉 | a ∈ S}

where:

S ⊆ Ω is a given set of objects

d : S → L is the associated decision function

notation: SX = {a | a ∈ S}
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2. Multi-class classification 2.1. Monotone classification

Multi-class classification

Goal of supervised classification algorithms:

extend the function d to Ω in the most reasonable way

concentrate on finding a function λ : X → L that minimizes the
expected loss on an independent set of test examples

Different approaches:

instance-based, such as nearest neighbour methods
model-based, such as classification trees

Distribution classifiers: output is a PMF over L

mathematically: λ̃ : X → F(L)

selecting a single label: Bayesian decision
(label with the highest probability is returned)
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2. Multi-class classification 2.1. Monotone classification

Multi-criteria evaluation

In many cases, L exhibits a natural ordering and could be treated as
an ordinal scale (chain): ordinal classification/regression

Often, objects are described by (true) criteria (ci ,≤ci
) (chains)

The product ordering turns X into a partially ordered set (X ,≤X )
(poset)

Multi-criteria evaluation: quality assessment, environmental data,
social surveys, etc.

Natural monotonicity constraint

An object a that scores at least as good on all criteria as an object b must
be classified (ranked) at least as good as object b

Prof. dr. Bernard De Baets (KERMIT) Monotone but not boring Córdoba (SP), Nov 24, 2011 18 / 88



2. Multi-class classification 2.1. Monotone classification

Monotone classification

Monotone classifier

Classifier + basic monotonicity constraint:

x <X y ⇒ λ(x) ≤L λ(y)

(supervised ranking/ordered sorting, monotone ordinal regression)

Monotone distribution classifier

Distribution classifier + stochastic monotonicity constraint:

x <X y ⇒ λ̃(x) �SD λ̃(y)

(First order) Stochastic Dominance (SD):

fX �SD fY ⇔ FX ≥ FY
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2. Multi-class classification 2.1. Monotone classification

Stochastic dominance

fY fX

FXFY

1
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2. Multi-class classification 2.1. Monotone classification

Selecting a single label

Bayesian decision potentially breaks the desired monotonicity and is
no longer acceptable in this case

The well-known relationship

fX �SD fY ⇒ E[fX ] ≤ E[fY ]

cannot be used as it requires the transformation of the ordinal scale
into a numeric scale

Set of medians (interval) of fX :

med(fX ) = {ℓ ∈ L |P{X ≤ ℓ} ≥ 1/2 ∧ P{X ≥ ℓ} ≥ 1/2}

reduces in the continuous case to the median m

only endpoints of the interval have non-zero probability
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2. Multi-class classification 2.1. Monotone classification

Selecting a single label from the set of medians

The set of medians reduces the PMF to an interval. Does there exist
an ordering on intervals that is compatible with FSD?

[k1, ℓ1] ≤
[2]
L

[k2, ℓ2] ⇔
(

k1 ≤L k2 ∧ ℓ1 ≤L ℓ2

)

New relationship:

fX �SD fY ⇒ med(fX ) ≤
[2]
L

med(fY )

Selecting a single label

1 Pessimistic median (lower)

2 Optimistic median (upper)

3 Midpoint (or smaller/greater of the two midpoints) [not meaningful]

turn a monotone distibution classifier into a monotone classifier
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2. Multi-class classification 2.2. Two simple monotone classifiers

How to label a new point?
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2. Multi-class classification 2.2. Two simple monotone classifiers

Minimal and maximal extensions

1 Minimal Extension: λmin : X → L

assigns best label of “objects below”:

λmin(x) = max{d(s) | s ∈ SX ∧ s ≤X x}

if no such object: λmin(x) = min(L)

2 Maximal Extension: λmax : X → L

assigns worst label of “objects above”:

λmax(x) = min{d(s) | s ∈ SX ∧ x ≤X s}

if no such object: λmax(x) = max(L)

Monotone classifiers

1 λmin and λmax are monotone classifiers

2 Interpolation: midpoint leads to a monotone classifier
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2. Multi-class classification 2.3. Reversed preference

Things can go dead wrong
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

Noise in multi-criteria evaluation

(S, d) is called monotone if for all x and y in S

x = y ⇒ d(x) = d(y)

(absence of doubt/ambiguity)

and

x <X y ⇒ d(x) ≤L d(y)

(absence of reversed preference)

Non-monotonicity defines a symmetric and transitive relation on S

Monotone extensions

If the data set is monotone, then

1 λmin and λmax are monotone extensions of d to X

2 any monotone extension λ of d to X : λmin ≤L λ ≤L λmax
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2. Multi-class classification 2.3. Reversed preference

How to handle noise?

1 Non-invasive approach: keep the data set as is

excludes the use of some monotone classification algorithms
(such as TOMASO)

restricts the accuracy of any monotone classifier
(independence number)

2 Data set reduction: identify the noisy objects and delete them

3 Data set relabelling: identify the noisy objects and relabel them
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

A non-monotone data set
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2. Multi-class classification 2.3. Reversed preference

The maximum independent set problem

The non-monotonicity relation corresponds to a comparability graph:

A monotone subset corresponds to an independent set of this graph

Maximal independent set = independent set that is not a subset of
any other independent set

Maximum independent set = independent set of biggest cardinality
(= independence number α)

A maximum independent set in a comparability graph can be
determined using network flow theory (cubic time complexity)

Let (S ′, d) be a maximal independent set. For x /∈ S ′, it holds that

d(x) <L λmin(x) ≤L λmax(x) or λmin(x) ≤L λmax(x) < d(x)
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2. Multi-class classification 2.3. Reversed preference

Which maximum independent set to select?
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2. Multi-class classification 2.3. Reversed preference

Which maximum independent set to select?
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2. Multi-class classification 2.3. Reversed preference

Relabelling options

Universal tool: weighted maximum independent set problems and
network flow theory

1 Optimal ordinal relabelling: relabelling a minimum number of
objects, of which all corona objects are relabelled to a minimum
extent

2 Optimal cardinal relabelling (identifying L with the first n
integers): minimal relabelling loss

zero-one loss: maximum independent set
broad class of loss functions, including L1 loss and squared loss

3 Optimal hierarchical cardinal relabelling (single pass):

minimizing loss while relabelling a minimal number of objects
relabelling a minimal number of objects while minimizing loss
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

Distribution representation of a data set

Collection of learning examples (S, d)

For each x ∈ SX , a CDF F̂ (x, ·) : L → [0, 1] is built from the

collection of learning examples

F̂ (x, ℓ) =
|{a ∈ S | a = x ∧ d(a) ≤L ℓ}|

|{a ∈ S | a = x}|

(cumulative relative frequency distribution)

The distribution data set (SX , F̂ )
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

A distribution data set
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2. Multi-class classification 2.4. Two simple monotone distribution classifiers

Stochastic minimal and maximal extensions

1 Minimal Extension: Fmin : X × L → [0, 1]

Fmin(x, ℓ) = min{F̂ (s, ℓ) | s ∈ SX ∧ s ≤X x}

if no such object: fmin(x, min(L)) = 1

2 Maximal Extension: Fmax : X × L → [0, 1]

Fmax(x, ℓ) = max{F̂ (s, ℓ) | s ∈ SX ∧ x ≤X s}

if no such object: fmax(x, max(L)) = 1

Monotone distribution classifiers

1 Fmin and Fmax are monotone distribution classifiers

2 Interpolation: for any S ∈ [0, 1], the mapping

F̃ = S Fmin + (1 − S)Fmax

is also a monotone distribution classifier
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2. Multi-class classification 2.5. Reversed preference revisited

Monotone distribution data sets

(SX , F̂ ) is called monotone if for all x and y in SX

x <X y ⇒ F̂ (x, ·) �SD F̂ (y, ·)

Reversed preference:

x <X y while not F̂ (x, ·) �SD F̂ (y, ·)

Monotone extensions

If the distribution data set is monotone, then

1 Fmin and Fmax are monotone extensions of F̂ to X

2 any monotone extension F of d to X :

Fmin(y, ·) �SD F (y, ·) �SD Fmax(y, ·)
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2. Multi-class classification 2.5. Reversed preference revisited

A non-monotone distribution data set
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2. Multi-class classification 2.5. Reversed preference revisited

How to handle noise?

1 Non-invasive approach: keep the data set as is

2 Data set reduction: identify the noisy distributions and delete them

the non-monotonicity relation is not transitive (maximum independent
set problem is NP-complete)

deleting entire distributions is quite invasive

deleting a single object affects the entire distribution and is hard to
realize

3 Data set relabelling:

transitivity of non-monotonicity still holds at the label level

L1-optimal relabelling is possible using network flow algorithms

does not affect the frequency of feature vectors
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2. Multi-class classification 2.5. Reversed preference revisited

After relabelling: a monotone distribution data set
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

A non-invasive approach

Aim: to build a monotone distribution classifier from a possibly
non-monotone distribution data set

Weighted sums of Fmin and Fmax are solutions to this problem

Aim: to identify more general interpolation schemes, depending on
both the element x and the label ℓ

For given x and ℓ:

monotone situation: Fmin(x, ℓ) ≥ Fmax(x, ℓ)

reversed preference situation: Fmin(x, ℓ) < Fmax(x, ℓ)
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

The main theorem

OSDL generic theorem

Given two X × L → [0, 1] mappings s and t, the mapping
F̃ : X × L → [0, 1]

F̃ (x, ℓ) =























s(x, ℓ)Fmin(x, ℓ) +
(

1 − s(x, ℓ)
)

Fmax(x, ℓ)

if Fmin(x, ℓ) ≥ Fmax(x, ℓ)

t(x, ℓ)Fmin(x, ℓ) +
(

1 − t(x, ℓ)
)

Fmax(x, ℓ)

if Fmin(x, ℓ) < Fmax(x, ℓ)

is a monotone distribution classifier if and only if

1 s is decreasing in 1st and increasing in 2nd argument

2 t is increasing in 1st and decreasing in 2nd argument
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Realization 1: OSDL

If one does not want to distinguish between the monotone and the
reversed preference situation (s and t are identical), then the simple
interpolation scheme is the only one

OSDL

If s(x, ℓ) = t(x, ℓ) for all x and ℓ, then

s(x, ℓ) = t(x, ℓ) = S

for some constant S ∈ [0, 1]
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Measuring support

1 The mapping Nmin : X ×L → N:

Nmin(x, ℓ) = |{〈y, d(y)〉 ∈ (S, d) | y ≤X x ∧ d(y) >L ℓ}|

counts the number of instances that indicate that x should receive a
label strictly greater than ℓ

2 The mapping Nmax : X × L → N:

Nmax(x, ℓ) = |{〈y, d(y)〉 ∈ (S, d) | x ≤X y ∧ d(y) ≤L ℓ}|

counts the number of instances that indicate that x should receive a
label at most ℓ

3 Both are strictly positive in the reversed preference situation
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2. Multi-class classification 2.6. The Ordinal Stochastic Dominance Learner

Realizations 2 and 3: one parameter S ∈ [0, 1]

Balanced OSDL

1 s(x, ℓ) = S

2 t(x, ℓ) =
Nmin(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)

Double-balanced OSDL

1 s(x, ℓ) =







Nmax(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)
if Nmin(x, ℓ) + Nmax(x, ℓ) 6= 0

S otherwise

2 t(x, ℓ) =
Nmin(x, ℓ)

Nmin(x, ℓ) + Nmax(x, ℓ)
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2. Multi-class classification 2.7. Ranking trees

Towards ranking trees

c1 c2 c3 class label

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.7. Ranking trees

Towards ranking trees

c1 c2 c3 class label

a1 − − + Bad
a2 + − − Moderate
a3 − + + Good
a4 + + − Moderate
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2. Multi-class classification 2.7. Ranking trees

Basic principles

Growing principle: strive for purity by minimizing solvable doubt
and reversed preference

Interdependence of the leaves due to monotonicity:
split of one leaf may have an effect on all the other leaves

Pruning: theory of minimal cost-complexity pruning collapses

Labelling rule: poset structure on the leaves allows for the use of
OSDL as labelling rule
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2. Multi-class classification 2.8. References

Topics not discussed

Other approaches to monotone classification

Experimental comparison

Performance measures

Random generation of monotone data sets
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3. Decision making
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3. Decision making 3.1 Problem statement

The Lar region in Iran

Lar region in Iran

75 km north-east of Tehran

Ecological, economical and
socio-cultural value

Flora and fauna
Water supply
Extensive stock farming
Tourism
Nomads

Region under heavy
ecological pressure
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3. Decision making 3.1 Problem statement

Management of the region

Four proposed management plans involving 12 criteria

For each of the 12 criteria, each of the 31 stakeholders

defines a linear order on the 4 plans
expresses how strongly (s)he prefers one plan over another:
intensities ranging from very weak to very strong

Overall problem: establish a linear order on the 4 plans

Subproblems: for each of the 12 criteria establish

social order: linear order on the 4 plans
(social choice problem)
social intensities of preferences: express how strongly one plan is
preferred over another

Solution procedure: translate into a monotonicity problem
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3. Decision making 3.1 Problem statement

Data representation

A set S of N stakeholders

A set A of k alternatives

An ordinal scale L of m intensities of preference: ℓ1 < · · · < ℓm

Each stakeholder Si delivers:

a linear order ≻i on A
a mapping Pi :≻i→ L assigning intensities to couples of alternatives

consistency in the form of monotonicity conditions:

Pi is increasing (w.r.t. ≻i) in its first argument
Pi is decreasing (w.r.t. ≻i) in its second argument
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3. Decision making 3.1 Problem statement

Example: data of stakeholder Si

Linear order of Si : a ≻i b ≻i c ≻i d

Intensities of preferences Pi :

a b c d

a strong strong strong

b weak strong

c moderate

d
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3. Decision making 3.1 Problem statement

Extended representation

We extend the ordinal scale L to the ordinal scale

L∗ = {−ℓm, . . . ,−ℓ1, ℓ0, ℓ1, . . . , ℓm}

containing:

signed intensities of preferences
zero intensity of preference ℓ0

We extend Pi to P ′
i : A×A → L∗ as follows:

if a ≻i b, then P ′
i (a, b) = Pi (a, b) and

P ′
i (b, a) = −Pi (a, b)

P ′
i (a, a) = ℓ0

Notation: ℓ−i := −ℓi

Prof. dr. Bernard De Baets (KERMIT) Monotone but not boring Córdoba (SP), Nov 24, 2011 62 / 88



3. Decision making 3.1 Problem statement

Example revisited

Linear order of Si : a ≻i b ≻i c ≻i d

Intensities of preferences P ′
i :

a b c d

a none strong strong strong

b −strong none weak strong

c −strong −weak none moderate

d −strong −strong −moderate none
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3. Decision making 3.1 Problem statement

Poset representation

Linear order of Si : a ≻i b ≻i c ≻i d
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Linear order of Si : a ≻i b ≻i c ≻i d
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Linear order of Sj : a ≻j b ≻j d ≻j c
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3. Decision making 3.1 Problem statement

Poset representation with intensities

Intensities of preferences of Sj on the poset of Si :
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3. Decision making 3.1 Problem statement

Poset representation with distribution of intensities

F(a,b)(ℓi ) = number of times the intensity for a ≻ b is at most ℓi
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3. Decision making 3.1 Problem statement

Social order and social intensities of preferences

Suppose a social order has been selected

Optimistic or pessimistic median intensities (upper half)

not necessarily increasing

not necessarily positive

Case of stochastic monotonicity (upper half)

Medians are

increasing

not necessarily positive
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3. Decision making 3.2. Solution of the problem

Classical majorities

Interpretation:

F(a,b)(ℓ0) is the number of stakeholders against a ≻ b

F(b,a)(ℓ0) is the number of stakeholders in favour of a ≻ b

F(a,b)(ℓ0) + F(b,a)(ℓ0) = N

Classical majority a �M b: F(a,b)(ℓ0) ≤ F(b,a)(ℓ0)
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3. Decision making 3.2. Solution of the problem

Condorcet order

Condorcet majority cycle:

if a ≻M b and b ≻M c , but c ≻M a

If a ≻M b, b ≻M c and a ≻M c :

Condorcet order a ≻M b ≻M c

it may hold that a ≻M c received the weakest support

In case of a Condorcet order

Medians are

positive

not necessarily increasing (and hence no stochastic monotonicity)
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3. Decision making 3.2. Solution of the problem

Optimization problem

For any linear order ≻ on A, we determine G such that:

1 it generates cumulative frequency distributions:

for any (a, b), G(a,b) is increasing and G(a,b)(ℓm) = N

2 it preserves symmetry: G(b,a)(ℓ−i ) = N − G(a,b)(ℓi−1)

3 it renders ≻ a Condorcet order:
for any a ≻ b it holds that G(a,b)(ℓ0) ≤ G(b,a)(ℓ0)

4 it generates stochastically monotone distributions

5 it is as close as possible to F , i.e. it has minimal error

d(F , G) =
∑

a,b∈A

∑

ℓ∈L

∣

∣F(a,b)(ℓ) − G(a,b)(ℓ)
∣

∣

(implicitly assumes L1-distance on L)

Social order: linear order ≻ for which d(F ,G ) is minimal
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3. Decision making 3.2. Solution of the problem

Optimization problem

The optimization problem can be translated into a weighted
maximum independent set problem

Using an intelligent scheme, it can be solved efficiently using nearest
and farthest maximum cuts in flow networks

In case of a Condorcet order

If the Condorcet order is not stochastically monotone, then

there does not exist a stochastically monotone linear order

it is not necessarily optimal
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3. Decision making 3.3. Illustrations

Illustration

Condorcet order a ≻M b ≻M c
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3. Decision making 3.3. Illustrations

Real-life example: the Wildlife criterion in Lar

Condorcet order a ≻M b ≻M c ≻M d
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3. Decision making 3.3. Illustrations
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3. Decision making 3.3. Illustrations

Discussion

Transparent methodology:

it builds distributions before taking the median
(credo: “first process the data, then defuzzify”)

it does so in an optimal way

it allows to simulate the effect of the inclusion/exclusion of minorities
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3. Decision making 3.4. Voting

A new social choice function

Reduced setting:

each stakeholder Si delivers only a linear order ≻i , no intensities of
preferences
intensity ℓ1: vote in favour
intensity ℓ−1: vote against

Social order: linear order for which a minimum number of
preferences needs to be reversed

In case of a Condorcet order

If the Condorcet order is not monotone, then

there does not exist a monotone linear order

it is not necessarily optimal
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: a ≻ b ≻ c ≻ d
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3. Decision making 3.4. Voting
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: b ≻ a ≻ c ≻ d
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3. Decision making 3.4. Voting

A final example: a non-optimal Condorcet order

Condorcet order: b ≻ a ≻ c ≻ d
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3. Decision making 3.4. Voting
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3. Decision making 3.4. Voting

Closing observations

1 In many modelling problems, there exists a monotone relationship
between some of the input variables and the output variable

2 Resolution of non-monotonicity can be translated into an
optimization problem

3 The key lies in a cumulative approach and network flow theory

4 Group decision making problems can be cast in this framework

5 A new avenue of research
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3. Decision making 3.4. Voting

Thank you for your attention!

bernard.debaets@ugent.be
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	1. Fuzzy rule-based modelling
	1.1. Fuzzy rule bases
	1.2. Monotone fuzzy rule-based models
	1.3. References

	2. Multi-class classification
	2.1. Monotone classification
	2.2. Two simple monotone classifiers
	2.3. Reversed preference
	2.4. Two simple monotone distribution classifiers
	2.5. Reversed preference revisited
	2.6. The Ordinal Stochastic Dominance Learner
	2.7. Ranking trees
	2.8. References

	3. Decision making
	3.1 Problem statement
	3.2. Solution of the problem
	3.3. Illustrations
	3.4. Voting


