Monotone but not boring: some encounters with non-monotonicity

Prof. dr. Bernard De Baets

Ghent University, Belgium

invited talk presented at the Eleventh Internat. Conference on Intelligent Systems Design and Applications

Córdoba (SP), Nov 24, 2011

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

1 / 88

Starting observations

- In many modelling problems, there exists a monotone relationship between some of the input variables and the output variable
- Monotonicity is a common property of evaluation and selection procedures
- This monotone relationship may not be fully present in the observed input-output data due to data imperfections
- Monotonicity is a global property in contrast to a local property such as continuity
- In case the monotonicity property applies, any violation of it is simply unacceptable

1. Fuzzy rule-based modelling

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

Córdoba (SP), Nov 24, 2011 3 / 88

Soil erosion

Phenomenon: loss of soil by erosion increases with increasing slope angle and decreasing soil coverage with vegetation

(Geoderma, Mitra et al., 1998)

slope angle class	very large	moderately high	high
	large	moderately low	moderately high
	medium	low	moderately high
	small	low	moderate
	very small	low	low
		forest	pasture
land use class			

Increasing, non-smooth rule base

Citrus sudden death

Phenomenon: distance covered by the vector transmitting citrus sudden death to sweet orange trees increases with increasing wind intensity

(Ecological Modelling, M. da Silva Peixoto et al., 2008)

IF	N IS calmness	THEN	R IS very small
IF	N IS breeze	THEN	R IS very small
IF	N IS whiff	THEN	R IS small
IF	N IS weak	THEN	R IS medium
IF	N IS moderate	THEN	R IS medium
IF	N IS fresh	THEN	R IS big
IF	N IS very fresh	THEN	R IS big
IF	N IS strong	THEN	R IS very big
IF	N IS very strong	THEN	R IS very big

Increasing, smooth rule base

Citrus sudden death

6 / 88

Fuzzy rule-based model

Model characteristics:

- m input variables X_ℓ and a single output variable Y
- rules of the form

 R_s : IF X_1 IS $B_{j_{1,s}}^1$ AND ... AND X_m IS $B_{j_{m,s}}^m$ THEN Y IS A_{i_s}

- linguistic values $B_{i_{\ell,s}}^{\ell}$ of X_{ℓ} : trapezoidal; fuzzy partition
- linguistic values A_{i_s} : trapezoidal; fuzzy partition (bounded domain)
- natural ordering on the linguistic values of each variable

Fuzzy partition

8 / 88

Mamdani–Assilian fuzzy models

Observation

Mamdani-Assilian fuzzy models with a monotone rule base do not necessarily result in a monotone input-output mapping

Monotone input-output behaviour

If the original rule base is **complete** and **increasing**, then the input-output mapping can only be **increasing** in the following cases:

O Center-of-Gravity defuzzification:

- one input variable: basic t-norms T_M , T_P and T_L
- two or three input variables: T_P and a **smooth** rule base

Mean-of-Maxima defuzzification:

- one input variable: basic t-norms T_M , T_P and T_L
- two or more input variables: T_M or T_P , and a smooth rule base

Implication-based fuzzy models

Cumulative modifiers:

- at-least modifier: $ATL(C)(x) = \sup\{C(t) \mid t \le x\}$
- at-most modifier: $ATM(C)(x) = \sup\{C(t) \mid t \ge x\}$

10 / 88

Implication-based fuzzy models

Connectives: left-continuous t-norm and its residual implicator

Modified rule bases:

- ATL/ATM rule base: applying ATL/ATM to all antecedents and consequents
- ATLM rule base: union of the above

Monotone input-output mapping

If the original rule base is **increasing**, then the input-output mapping is **increasing** in the following cases:

- ATL rule base and **First-of-Maxima defuzzification**
- **2** ATM rule base and Last-of-Maxima defuzzification
- ATLM rule base and Mean-of-Maxima defuzzification

11 / 88

References

- E. Van Broekhoven and B. De Baets, Fast and accurate center of gravity defuzzification of fuzzy system outputs defined on trapezoidal fuzzy partitions, Fuzzy Sets and Systems 157 (2006), 904–918.
- E. Van Broekhoven and B. De Baets, Monotone Mamdani-Assilian models under Mean of Maxima defuzzification, Fuzzy Sets and Systems 159 (2008), 2819–2844.
- E. Van Broekhoven and B. De Baets, Only smooth rule bases can generate monotone Mamdani-Assilian models under COG defuzzification, IEEE Trans. Fuzzy Systems 17 (2009), 1157–1174.
- M. Štěpnička and B. De Baets, Implication-based models of monotone fuzzy rule bases, Fuzzy Sets and Systems, submitted.

2. Multi-class classification

2. Multi-class classification

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

Córdoba (SP), Nov 24, 2011 13 / 88

Toy example

Classification problem:

	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	class label
a_1	_	_	+	А
a ₂	+	—	—	В
a ₃	-	+	+	С
a4	+	+	—	В

Monotone classification problem:

	<i>c</i> ₁	<i>c</i> ₂	c ₃	evaluation
a ₁	—	_	+	Bad
<i>a</i> 2	+	—	—	Moderate
a ₃	—	+	+	Good
a ₄	+	+	_	Moderate

Toy example

Monotone classification problem:

Research question

How to produce guaranteed **monotone** classification results, even when the set of learning examples is **not monotone**?

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

Multi-class classification

- Problem: to attach labels from a finite set ${\cal L}$ to the elements of some set of objects Ω
- Each object $a \in \Omega$ is represented by a **feature vector**

$$\mathbf{a} = (c_1(a), c_2(a), \ldots, c_n(a))$$

in the feature space ${\mathcal X}$

• Collection of learning examples: multiset

$$(\mathcal{S}, d) \equiv \{ \langle \mathbf{a}, d(\mathbf{a}) \rangle \, | \, \mathbf{a} \in \mathcal{S} \}$$

where:

- $\mathcal{S} \subseteq \Omega$ is a given set of objects
- $d: \mathcal{S} \rightarrow \mathcal{L}$ is the associated decision function

• notation:
$$S_{\mathcal{X}} = \{ \mathbf{a} \mid \mathbf{a} \in S \}$$

Multi-class classification

• Goal of supervised classification algorithms:

- extend the function d to Ω in the most reasonable way
- concentrate on finding a function λ: X → L that minimizes the expected loss on an independent set of test examples
- Different approaches:
 - instance-based, such as nearest neighbour methods
 - model-based, such as classification trees
- Distribution classifiers: output is a PMF over $\mathcal L$
 - mathematically: $\tilde{\lambda} : \mathcal{X} \to \mathcal{F}(\mathcal{L})$
 - selecting a single label: Bayesian decision (label with the highest probability is returned)

Multi-criteria evaluation

- In many cases, \mathcal{L} exhibits a natural ordering and could be treated as an ordinal scale (chain): ordinal classification/regression
- Often, objects are described by (true) criteria (c_i, \leq_{c_i}) (chains)
- The product ordering turns X into a partially ordered set (X, ≤_X) (poset)
- Multi-criteria evaluation: quality assessment, environmental data, social surveys, etc.

Natural monotonicity constraint

An object a that scores at least as good on all criteria as an object b must be classified (ranked) at least as good as object b

Monotone classification

Monotone classifier

Classifier + basic monotonicity constraint:

$$\mathbf{x} <_{\mathcal{X}} \mathbf{y} \Rightarrow \lambda(\mathbf{x}) \leq_{\mathcal{L}} \lambda(\mathbf{y})$$

(supervised ranking/ordered sorting, monotone ordinal regression)

Monotone distribution classifier

Distribution classifier + stochastic monotonicity constraint:

$$\mathbf{x} <_{\mathcal{X}} \mathbf{y} \Rightarrow ilde{\lambda}(\mathbf{x}) \preceq_{\mathrm{SD}} ilde{\lambda}(\mathbf{y})$$

(First order) Stochastic Dominance (SD):

$$f_X \preceq_{\mathrm{SD}} f_Y \Leftrightarrow F_X \ge F_Y$$

Stochastic dominance

Selecting a single label

- Bayesian decision potentially breaks the desired monotonicity and is no longer acceptable in this case
- The well-known relationship

$$f_X \preceq_{\mathrm{SD}} f_Y \Rightarrow \mathrm{E}[f_X] \leq \mathrm{E}[f_Y]$$

cannot be used as it requires the transformation of the ordinal scale into a numeric scale

• Set of medians (interval) of f_X :

 $\operatorname{med}(f_X) = \{\ell \in \mathcal{L} \mid \mathcal{P}\{X \leq \ell\} \geq 1/2 \land \mathcal{P}\{X \geq \ell\} \geq 1/2\}$

- reduces in the continuous case to the median *m*
- only endpoints of the interval have non-zero probability

Selecting a single label from the set of medians

• The set of medians reduces the PMF to an interval. Does there exist an ordering on intervals that is compatible with FSD?

$$[k_1, \ell_1] \leq_{\mathcal{L}}^{[2]} [k_2, \ell_2] \Leftrightarrow \left(k_1 \leq_{\mathcal{L}} k_2 \land \ell_1 \leq_{\mathcal{L}} \ell_2\right)$$

• New relationship:

$$f_X \preceq_{\mathrm{SD}} f_Y \Rightarrow \mathrm{med}(f_X) \leq_{\mathcal{L}}^{[2]} \mathrm{med}(f_Y)$$

Selecting a single label

- Pessimistic median (lower)
- Optimistic median (upper)
- Midpoint (or smaller/greater of the two midpoints) [not meaningful]

turn a monotone distibution classifier into a monotone classifier

How to label a new point?

Minimal and maximal extensions

- **1** Minimal Extension: $\lambda_{\min} : \mathcal{X} \to \mathcal{L}$
 - assigns best label of "objects below":

 $\lambda_{\min}(\mathbf{x}) = \max\{d(s) \mid \mathbf{s} \in \mathcal{S}_{\mathcal{X}} \land \mathbf{s} \leq_{\mathcal{X}} \mathbf{x}\}$

- if no such object: $\lambda_{\min}(\mathbf{x}) = \min(\mathcal{L})$
- **2** Maximal Extension: $\lambda_{max} : \mathcal{X} \to \mathcal{L}$
 - assigns worst label of "objects above":

 $\lambda_{\max}(\mathbf{x}) = \min\{d(s) \mid \mathbf{s} \in \mathcal{S}_{\mathcal{X}} \land \mathbf{x} \leq_{\mathcal{X}} \mathbf{s}\}$

• if no such object: $\lambda_{\max}(\mathbf{x}) = \max(\mathcal{L})$

Monotone classifiers

- **(**) λ_{\min} and λ_{\max} are monotone classifiers
- Interpolation: midpoint leads to a monotone classifier

Things can go dead wrong

Noise in multi-criteria evaluation

• (S, d) is called **monotone** if for all x and y in S

$$\mathbf{x} = \mathbf{y} \Rightarrow d(x) = d(y)$$

(absence of doubt/ambiguity)

and

$$\mathbf{x} <_{\mathcal{X}} \mathbf{y} \Rightarrow d(\mathbf{x}) \leq_{\mathcal{L}} d(\mathbf{y})$$
(absence of reversed preference)

 \bullet Non-monotonicity defines a symmetric and transitive relation on ${\cal S}$

Monotone extensions

If the data set is monotone, then

() λ_{\min} and λ_{\max} are monotone extensions of d to \mathcal{X}

2 any monotone extension λ of d to \mathcal{X} : $\frac{\lambda_{\min} \leq_{\mathcal{L}} \lambda \leq_{\mathcal{L}} \lambda_{\max}}{\lambda_{\max}}$

27 / 88

How to handle noise?

Non-invasive approach: keep the data set as is

- excludes the use of some monotone classification algorithms (such as TOMASO)
- restricts the accuracy of any monotone classifier (independence number)
- **2** Data set reduction: identify the noisy objects and delete them
- **Oata set relabelling**: **identify** the noisy objects and **relabel** them

The maximum independent set problem

The non-monotonicity relation corresponds to a **comparability graph**:

- A monotone subset corresponds to an **independent set** of this graph
- Maximal independent set = independent set that is not a subset of any other independent set
- Maximum independent set = independent set of biggest cardinality
 (= independence number α)
- A maximum independent set in a comparability graph can be determined using **network flow theory** (cubic time complexity)

Let (\mathcal{S}', d) be a maximal independent set. For $x \notin \mathcal{S}'$, it holds that

$$d(x) <_{\mathcal{L}} \lambda_{\min}(\mathbf{x}) \leq_{\mathcal{L}} \lambda_{\max}(\mathbf{x}) \text{ or } \lambda_{\min}(\mathbf{x}) \leq_{\mathcal{L}} \lambda_{\max}(\mathbf{x}) < d(x)$$

Which maximum independent set to select?

Which maximum independent set to select?

Relabelling options

Universal tool: weighted maximum independent set problems and network flow theory

- Optimal ordinal relabelling: relabelling a minimum number of objects, of which all corona objects are relabelled to a minimum extent
- **Optimal cardinal relabelling** (identifying \mathcal{L} with the first *n* integers): minimal relabelling loss
 - zero-one loss: maximum independent set
 - broad class of loss functions, including L1 loss and squared loss

Optimal hierarchical cardinal relabelling (single pass):

- minimizing loss while relabelling a minimal number of objects
- relabelling a minimal number of objects while minimizing loss
Distribution representation of a data set

- Collection of learning examples (S, d)
- For each $\mathbf{x} \in S_{\mathcal{X}}$, a CDF $\hat{F}(\mathbf{x}, \cdot) \colon \mathcal{L} \to [0, 1]$ is built from the collection of learning examples

$$\hat{F}(\mathbf{x}, \ell) = \frac{|\{a \in \mathcal{S} \mid \mathbf{a} = \mathbf{x} \land d(a) \leq_{\mathcal{L}} \ell\}|}{|\{a \in \mathcal{S} \mid \mathbf{a} = \mathbf{x}\}|}$$

(cumulative relative frequency distribution)

• The distribution data set (S_{χ}, \hat{F})

A distribution data set

Prof. dr. Bernard De Baets (KERMIT)

Stochastic minimal and maximal extensions

 $\begin{array}{l} \bullet \quad \text{Minimal Extension: } F_{\min} \colon \mathcal{X} \times \mathcal{L} \to [0,1] \\ \\ F_{\min}(\mathbf{x},\ell) = \min\{\hat{F}(\mathbf{s},\ell) \mid \mathbf{s} \in \mathcal{S}_{\mathcal{X}} \land \mathbf{s} \leq_{\mathcal{X}} \mathbf{x}\} \end{array}$

• if no such object: $\mathit{f}_{\min}(\mathbf{x},\min(\mathcal{L})) = 1$

2 Maximal Extension: $F_{max}: \mathcal{X} \times \mathcal{L} \rightarrow [0, 1]$

 $F_{\max}(\mathbf{x}, \ell) = \max\{\hat{F}(\mathbf{s}, \ell) \mid \mathbf{s} \in \mathcal{S}_{\mathcal{X}} \land \mathbf{x} \leq_{\mathcal{X}} \mathbf{s}\}$

• if no such object:
$$f_{\sf max}({f x},{\sf max}({\cal L}))=1$$

Monotone distribution classifiers

F_{min} and F_{max} are monotone distribution classifiers

2 Interpolation: for any $S \in [0, 1]$, the mapping

$$ilde{F} = S F_{\min} + (1 - S) F_{\max}$$

is also a monotone distribution classifier

Prof. dr. Bernard De Baets (KERMIT)

Monotone distribution data sets

• $(\mathcal{S}_{\mathcal{X}}, \hat{F})$ is called monotone if for all **x** and **y** in $\mathcal{S}_{\mathcal{X}}$

$$\mathbf{x} <_{\mathcal{X}} \mathbf{y} \Rightarrow \hat{F}(\mathbf{x}, \cdot) \preceq_{\mathrm{SD}} \hat{F}(\mathbf{y}, \cdot)$$

• Reversed preference:

$$\mathbf{x} <_{\mathcal{X}} \mathbf{y}$$
 while not $\hat{F}(\mathbf{x}, \cdot) \preceq_{\mathrm{SD}} \hat{F}(\mathbf{y}, \cdot)$

Monotone extensions

If the distribution data set is monotone, then

- F_{\min} and F_{\max} are monotone extensions of \hat{F} to \mathcal{X}
- **2** any monotone extension F of d to \mathcal{X} :

$$F_{\min}(\mathbf{y}, \cdot) \preceq_{\mathrm{SD}} F(\mathbf{y}, \cdot) \preceq_{\mathrm{SD}} F_{\max}(\mathbf{y}, \cdot)$$

A non-monotone distribution data set

Prof. dr. Bernard De Baets (KERMIT)

A non-monotone distribution data set

How to handle noise?

- Non-invasive approach: keep the data set as is
- **2 Data set reduction**: identify the noisy distributions and delete them
 - the non-monotonicity relation is **not transitive** (maximum independent set problem is NP-complete)
 - deleting entire distributions is quite invasive
 - deleting a single object affects the entire distribution and is hard to realize

Oata set relabelling:

- transitivity of non-monotonicity still holds at the label level
- L1-optimal relabelling is possible using network flow algorithms
- does not affect the frequency of feature vectors

After relabelling: a monotone distribution data set

A non-invasive approach

- Aim: to build a monotone distribution classifier from a possibly non-monotone distribution data set
- Weighted sums of F_{\min} and F_{\max} are solutions to this problem
- Aim: to identify more general interpolation schemes, depending on both the element x and the label ℓ
- For given \mathbf{x} and ℓ :
 - monotone situation: $F_{\min}(\mathbf{x}, \ell) \ge F_{\max}(\mathbf{x}, \ell)$
 - reversed preference situation: $F_{\min}(\mathbf{x}, \ell) < F_{\max}(\mathbf{x}, \ell)$

The main theorem

OSDL generic theorem

Given two $\mathcal{X} \times \mathcal{L} \to [0,1]$ mappings s and t, the mapping $\tilde{F} : \mathcal{X} \times \mathcal{L} \to [0,1]$

$$\tilde{F}(\mathbf{x},\ell) = \begin{cases} s(\mathbf{x},\ell)F_{\min}(\mathbf{x},\ell) + (1-s(\mathbf{x},\ell))F_{\max}(\mathbf{x},\ell) \\ & \text{if } F_{\min}(\mathbf{x},\ell) \geq F_{\max}(\mathbf{x},\ell) \\ t(\mathbf{x},\ell)F_{\min}(\mathbf{x},\ell) + (1-t(\mathbf{x},\ell))F_{\max}(\mathbf{x},\ell) \\ & \text{if } F_{\min}(\mathbf{x},\ell) < F_{\max}(\mathbf{x},\ell) \end{cases}$$

is a monotone distribution classifier if and only if

0 *s* is decreasing in 1st and increasing in 2nd argument

t is increasing in 1st and decreasing in 2nd argument

Monotone but not boring

Realization 1: OSDL

If one does not want to distinguish between the monotone and the reversed preference situation (s and t are identical), then the simple interpolation scheme is the only one

OSDL

If $s(\mathbf{x}, \ell) = t(\mathbf{x}, \ell)$ for all \mathbf{x} and ℓ , then

$$s(\mathbf{x}, \ell) = t(\mathbf{x}, \ell) = S$$

for some constant $S \in [0, 1]$

Measuring support

1 The mapping
$$N_{\min} : \mathcal{X} \times \mathcal{L} \to \mathbb{N}$$
:

 $\textit{N}_{\min}(\mathbf{x},\ell) = |\{\langle \mathbf{y}, d(y) \rangle \in (\mathcal{S},d) \,|\, \mathbf{y} \leq_{\mathcal{X}} \mathbf{x} \land d(y) >_{\mathcal{L}} \ell\}|$

counts the number of instances that indicate that ${\bf x}$ should receive a label strictly greater than ℓ

2 The mapping
$$N_{\max} : \mathcal{X} \times \mathcal{L} \to \mathbb{N}$$
:

 $N_{\mathsf{max}}(\mathbf{x},\ell) = |\{ \langle \mathbf{y}, d(y) \rangle \in (\mathcal{S},d) \, | \, \mathbf{x} \leq_{\mathcal{X}} \mathbf{y} \land d(y) \leq_{\mathcal{L}} \ell \} |$

counts the number of instances that indicate that ${\bf x}$ should receive a label at most ℓ

③ Both are strictly positive in the reversed preference situation

(

Realizations 2 and 3: one parameter $S \in [0, 1]$

Balanced OSDL

•
$$s(\mathbf{x}, \ell) = S$$

• $t(\mathbf{x}, \ell) = \frac{N_{\min}(\mathbf{x}, \ell)}{N_{\min}(\mathbf{x}, \ell) + N_{\max}(\mathbf{x}, \ell)}$

Double-balanced OSDL

$$s(\mathbf{x}, \ell) = \begin{cases} \frac{N_{\max}(\mathbf{x}, \ell)}{N_{\min}(\mathbf{x}, \ell) + N_{\max}(\mathbf{x}, \ell)} & \text{if } N_{\min}(\mathbf{x}, \ell) + N_{\max}(\mathbf{x}, \ell) \neq 0\\ S & \text{otherwise} \end{cases}$$

$$t(\mathbf{x}, \ell) = \frac{N_{\min}(\mathbf{x}, \ell)}{N_{\min}(\mathbf{x}, \ell) + N_{\max}(\mathbf{x}, \ell)}$$

Towards ranking trees

Towards ranking trees

Towards ranking trees

Basic principles

- Growing principle: strive for purity by minimizing solvable doubt and reversed preference
- Interdependence of the leaves due to monotonicity: split of one leaf may have an effect on all the other leaves
- Pruning: theory of minimal cost-complexity pruning collapses
- Labelling rule: poset structure on the leaves allows for the use of OSDL as labelling rule

Topics not discussed

- Other approaches to monotone classification
- Experimental comparison
- Performance measures
- Random generation of monotone data sets

References

Monotone classification:

- K. Cao-Van and B. De Baets, Growing decision trees in an ordinal setting, Internat. J. Intelligent Systems 18 (2003), 733–750.
- S. Lievens, B. De Baets and K. Cao-Van, A probabilistic framework for the design of instance-based supervised ranking algorithms in an ordinal setting, Annals of Operations Research 163 (2008), 115–142.
- S. Lievens and B. De Baets, Supervised ranking in the WEKA environment, Information Sciences 180 (2010), 4763–4771.

References

Relabelling:

- M. Rademaker, B. De Baets and H. De Meyer, Optimal monotone relabelling of partially non-monotone ordinal data, Optimization Methods and Software, in press.
- M. Rademaker, B. De Baets and H. De Meyer, Loss optimal monotone relabelling of noisy multi-criteria data sets, Information Sciences 179 (2009), 4089–4096.
- M. Rademaker and B. De Baets, Optimal restoration of stochastic monotonicity w.r.t. cumulative label frequency loss functions, Information Sciences 181 (2011), 747–757.

Monotone data set generation:

- K. De Loof, B. De Baets and H. De Meyer, On the random generation and counting of weak order extensions of a poset with given class cardinalities, Information Sciences 177 (2007), 220–230.
- K. De Loof, B. De Baets and H. De Meyer, On the random generation of monotone data sets, Information Processing Letters 107 (2008), 216–220.

3. Decision making

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

Córdoba (SP), Nov 24, 2011 57 / 88

The Lar region in Iran

Lar region in Iran

- 75 km north-east of Tehran
- Ecological, economical and socio-cultural value
 - Flora and fauna
 - Water supply
 - Extensive stock farming
 - Tourism
 - Nomads
- Region under heavy ecological pressure

Management of the region

- Four proposed management plans involving 12 criteria
- For each of the 12 criteria, each of the 31 stakeholders
 - defines a linear order on the 4 plans
 - expresses how strongly (s)he prefers one plan over another: intensities ranging from very weak to very strong
- Overall problem: establish a linear order on the 4 plans
- Subproblems: for each of the 12 criteria establish
 - social order: linear order on the 4 plans (social choice problem)
 - social intensities of preferences: express how strongly one plan is preferred over another
- Solution procedure: translate into a monotonicity problem

Data representation

- A set S of N stakeholders
- A set \mathcal{A} of k alternatives
- An ordinal scale \mathcal{L} of m intensities of preference: $\ell_1 < \cdots < \ell_m$
- Each stakeholder S_i delivers:
 - a linear order \succ_i on \mathcal{A}
 - a mapping $P_i : \succ_i \rightarrow \mathcal{L}$ assigning intensities to couples of alternatives
 - consistency in the form of monotonicity conditions:
 - P_i is increasing (w.r.t. \succ_i) in its first argument
 - P_i is decreasing (w.r.t. \succ_i) in its second argument

Example: data of stakeholder S_i

- Linear order of S_i : $a \succ_i b \succ_i c \succ_i d$
- Intensities of preferences *P_i*:

	а	Ь	С	d
а		strong	strong	strong
b			weak	strong
с				moderate
d				

Extended representation

 \bullet We extend the ordinal scale ${\cal L}$ to the ordinal scale

$$\mathcal{L}^* = \{-\ell_m, \ldots, -\ell_1, \ell_0, \ell_1, \ldots, \ell_m\}$$

containing:

- signed intensities of preferences
- zero intensity of preference ℓ_0

• We extend P_i to P'_i : $\mathcal{A} \times \mathcal{A} \to \mathcal{L}^*$ as follows:

• if $a \succ_i b$, then $P'_i(a, b) = P_i(a, b)$ and $P'_i(b, a) = -P_i(a, b)$

$$P_i'(a,a) = \ell_0$$

• Notation:
$$\ell_{-i} := -\ell_i$$

۲

Example revisited

- Linear order of S_i : $a \succ_i b \succ_i c \succ_i d$
- Intensities of preferences P'_i :

	а	Ь	С	d
а	none	strong	strong	strong
Ь	-strong	none	weak	strong
С	-strong	-weak	none	moderate
d	-strong	-strong	-moderate	none

Poset representation

Linear order of S_i : $a \succ_i b \succ_i c \succ_i d$

Prof. dr. Bernard De Baets (KERMIT)

Poset representation with intensities

Linear order of S_i : $a \succ_i b \succ_i c \succ_i d$

Prof. dr. Bernard De Baets (KERMIT)

Poset representation with intensities

Linear order of S_j : $a \succ_j b \succ_j d \succ_j c$

Poset representation with intensities

Intensities of preferences of S_j on the poset of S_i :

Poset representation with distribution of intensities

 $F_{(a,b)}(\ell_i)$ = number of times the intensity for $a \succ b$ is at most ℓ_i

Prof. dr. Bernard De Baets (KERMIT)

Social order and social intensities of preferences

Suppose a social order has been selected

Optimistic or pessimistic median intensities (upper half)

- not necessarily increasing
- not necessarily positive

Case of stochastic monotonicity (upper half)

Medians are

- increasing
- not necessarily positive

Classical majorities

- Interpretation:
 - $F_{(a,b)}(\ell_0)$ is the number of stakeholders against $a \succ b$
 - $F_{(b,a)}(\ell_0)$ is the number of stakeholders in favour of $a \succ b$

•
$$F_{(a,b)}(\ell_0) + F_{(b,a)}(\ell_0) = N$$

• Classical majority $a \succeq_M b$: $F_{(a,b)}(\ell_0) \leq F_{(b,a)}(\ell_0)$

Condorcet order

• Condorcet majority cycle:

if $a \succ_M b$ and $b \succ_M c$, but $c \succ_M a$

• If $a \succ_M b$, $b \succ_M c$ and $a \succ_M c$:

- Condorcet order $a \succ_M b \succ_M c$
- it may hold that $a \succ_M c$ received the weakest support

In case of a Condorcet order

Medians are

positive

not necessarily increasing (and hence no stochastic monotonicity)

Optimization problem

- For any linear order \succ on \mathcal{A} , we determine G such that:
 - it generates **cumulative frequency distributions**: for any (a, b), $G_{(a,b)}$ is increasing and $G_{(a,b)}(\ell_m) = N$
 - 2 it preserves symmetry: $G_{(b,a)}(\ell_{-i}) = N G_{(a,b)}(\ell_{i-1})$
 - it renders ≻ a Condorcet order: for any a ≻ b it holds that G_(a,b)(l₀) ≤ G_(b,a)(l₀)
 - It generates stochastically monotone distributions
 - it is as close as possible to F, i.e. it has minimal error

$$d(F,G) = \sum_{a,b\in\mathcal{A}} \sum_{\ell\in\mathcal{L}} \left| F_{(a,b)}(\ell) - G_{(a,b)}(\ell) \right|$$

(implicitly assumes L_1 -distance on \mathcal{L})

• Social order: linear order \succ for which d(F, G) is minimal
Optimization problem

- The optimization problem can be translated into a weighted maximum independent set problem
- Using an intelligent scheme, it can be solved efficiently using nearest and farthest maximum cuts in flow networks

In case of a Condorcet order

If the Condorcet order is not stochastically monotone, then

- there does not exist a stochastically monotone linear order
- it is not necessarily optimal

Illustration

Condorcet order $a \succ_M b \succ_M c$

Illustration

Condorcet order $a \succ_M b \succ_M c$

Illustration

Condorcet order $a \succ_M b \succ_M c$

Real-life example: the Wildlife criterion in Lar

Real-life example: the Wildlife criterion in Lar

Discussion

Transparent methodology:

- it builds distributions before taking the median (credo: "first process the data, then defuzzify")
- it does so in an optimal way
- it allows to simulate the effect of the inclusion/exclusion of minorities

A new social choice function

- Reduced setting:
 - each stakeholder S_i delivers only a linear order \succ_i , no intensities of preferences
 - intensity ℓ_1 : vote in favour
 - intensity ℓ_{-1} : vote against
- Social order: linear order for which a minimum number of preferences needs to be reversed

In case of a Condorcet order

If the Condorcet order is not monotone, then

- there does not exist a monotone linear order
- it is not necessarily optimal

Condorcet order: $a \succ b \succ c \succ d$

Prof. dr. Bernard De Baets (KERMIT)

Condorcet order: $a \succ b \succ c \succ d$

Condorcet order: $a \succ b \succ c \succ d$

Prof. dr. Bernard De Baets (KERMIT)

Condorcet order: $b \succ a \succ c \succ d$

Condorcet order: $b \succ a \succ c \succ d$

References

- K. Zendehdel, M. Rademaker, B. De Baets and G. Van Huylenbroeck, Qualitative valuation of environmental criteria through a group consensus based on stochastic dominance, Ecological Economics 67 (2008), 253–264.
- K. Zendehdel, M. Rademaker, B. De Baets and G. Van Huylenbroeck, Improving tractability of group decision making on environmental problems through the use of social intensities of preferences, Environmental Modelling and Software 24 (2009), 1457–1466.
- K. Zendehdel, M. Rademaker, B. De Baets and G. Van Huylenbroeck, Environmental decision making with conflicting social groups: A case study of the Lar rangeland in Iran, J. Arid Environments 74 (2010), 394–402.
- M. Rademaker and B. De Baets, Aggregation of monotone reciprocal relations with application to group decision making, Fuzzy Sets and Systems 184 (2011), 29–51.
- M. Rademaker and B. De Baets, A ranking procedure based on a natural monotonicity constraint, Information Fusion, submitted.

Closing observations

- In many modelling problems, there exists a monotone relationship between some of the input variables and the output variable
- Resolution of non-monotonicity can be translated into an optimization problem
- The key lies in a cumulative approach and network flow theory
- Group decision making problems can be cast in this framework
- A new avenue of research

Thank you for your attention!

bernard.debaets@ugent.be

Prof. dr. Bernard De Baets (KERMIT)

Monotone but not boring

Córdoba (SP), Nov 24, 2011 88 / 88