

COMPUTING SCIENCE

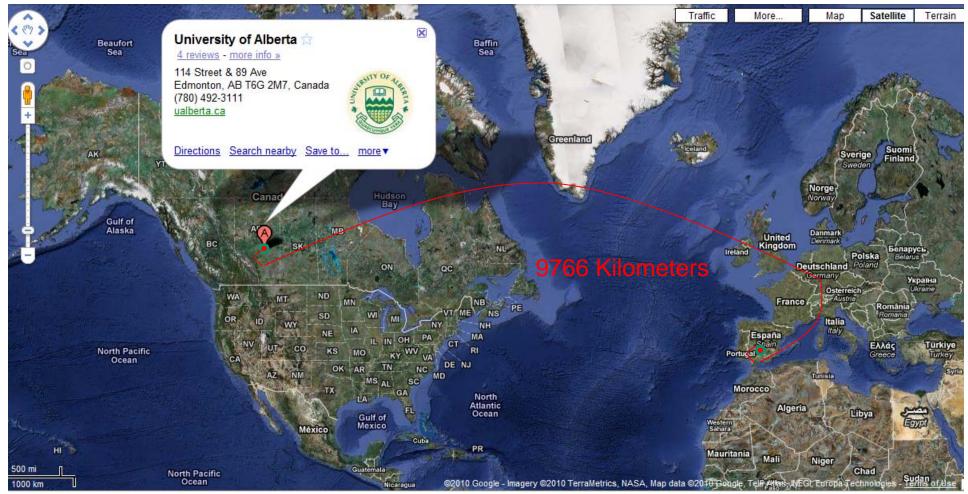
Information Network Analysis: Applications and Challenges

Osmar R. Zaïane

Professor and Scientific Director
Alberta Innovates Centre for
Machine Learning

International Conference on Intelligent Systems Design and Applications Cordoba, Spain, November 2011

University of Alberta - Edmonton



Edmonton, capital of Alberta, is the 5th largest city in Canada with more than 1 million people.

The University of Alberta is the second largest university in the country in terms of research funding

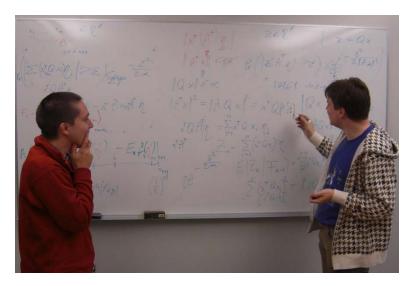
AICML Members

Founded at the University of Alberta in 2002 10 Principal Investigators (academic researchers)

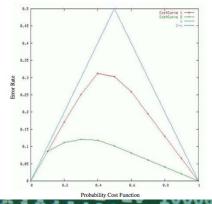
Computing Science Department 124 PhD, 96 MSc

2010-2011: 45 PhD students – 16 PDF – 37 MSc students 24 research and development staff. 1010101010101010101010101

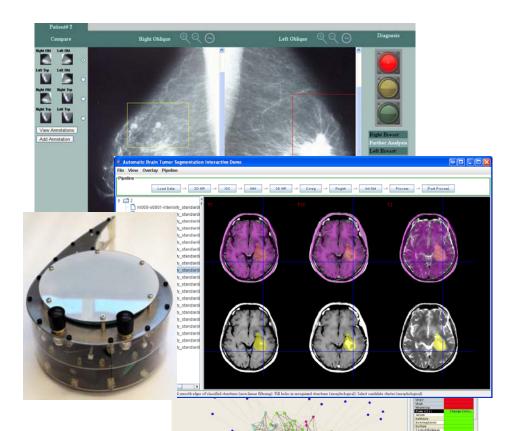
Research at AICML



From fundamental and practical research



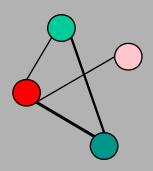
to advanced intelligent applications



SNA vs Social Networking

Social Network Analysis Deals with Information Networks.

It is NOT Social Networking



Nodes are entities

Edges are relationships

Nodes and edges may have attributes

SNA = Analysing such information networks

O.R. Zaïane © 2011

Н١	/pothetical	telecom	data
)	pourous	101000111	Satu

/		Phone			
ÍD	Name	Number	City	Plan	Avg. 3m Profit
1	John Smith	647 225 80	085 Toronto	2y	(\$12)
2	Joe Burns	416 345 60	060 Toronto	3у	\$724.00
3	John Simon	780 886 50	053 Edmonton	3у	\$189.45
4	Randy Regal	705 234 67	767 Toronto	3у	\$77.10
5	Jane Smith	780 233 56	645 Edmonton	2y	\$673.38
6	Mary Tasear Smith	780 334 34	434 Edmonton	3у	\$369.00
7	Susan Willcox	780 291 60	063 Edmonton	2y	\$131.00
8	Martha Witherby	780 322 97	768 Edmonton	3у	\$459.37
9	Wanda Rhymes	403 441 25	534 Calgary	3у	\$92.00
10	Julie Austinshaur	403 223 76	554 Calgary	3y	\$983.12
11	Kurt Locke	780 654 11	121 Edmonton	3y	\$830.00
12	Kent Wafegert	647 631 03	348 Toronto	3у	\$38.78
13	Megan Potink	780 432 56	523 Edmonton	3у	\$802.00
14	Kim Cho	780 434 23	399 Edmonton	3у	\$542.00
15	Brent Mavka	403 566 73	372 Calgary	2y	\$299.29
16	Brian Olso	403 939 75	574 Calgary	3у	\$430.78
17	Wayne Jones	780 236 30	006 Edmonton	3у	\$236.06
18	Patty Klien	780 550 18	319 Edmonton	1y	\$50.18
19	Greg Aderan	403 332 74	468 Calgary	3у	\$746.82
20	Morris Slevchuk	780 434 62	280 Edmonton	3у	\$628.01
21	Patrick Klum	403 337 92	291 Calgary	3у	\$33.79
22	Wilma Renton		388 Edmonton	3у	\$8.00
23	Ryan Waters	403 715 75	550 Calgary	3y	\$75.50
24	Ben Rikon	403 26			
			^		4 =

25 Jun Liu 26 Maggie Wong

27 Joe Garther

28 Karen Pollonts 29 Iris Cristle

32 Fred Couros 33 Natalie May

34 Aly Huffington

30 Gunther Twallaby

31 Monica Kwalshuck

			Phone			
_	ID	Name	Number	City	Plan	Avg. 3m Profit
	24	Ben Rikon	403 262 3134	Calgary	Зу	(\$26.23)
	1	John Smith	647 225 8085	Toronto	2y	(\$12)
i	33	Natalie May	403 409 6223	Calgary	3у	\$0.96
	22	Wilma Renton	780 118 2388	Edmonton	3у	\$8.00
1 !	21	Patrick Klum	403 337 9291	Calgary	3у	\$33.79
Li_	12	Kent Wafegert	647 631 0348	Toronto	Зу	\$38.78
	18	Patty Klien	780 550 1819	Edmonton	1y	\$50.18
	34	Aly Huffington	403 255 0304	Calgary	3у	\$55.03
	29	Iris Cristle	403 644 1423	Calgary	3у	\$64.14
	32	Fred Couros	416 773 2234	Toronto	3у	\$73.22
	23	Ryan Waters	403 715 7550	Calgary	3у	\$75.50
	4	Randy Regal	705 234 6767	Toronto	3у	\$77.10
	30	Gunther Twallaby	403 778 6040	Calgary	Зу	\$78.31
	26	Maggie Wong	226 882 0911	Toronto	2y	\$89.11
	25	Jun Liu	226 690 4241	Toronto	3у	\$90.42
	9	Wanda Rhymes	403 441 2534	Calgary	3у	\$92.00
	28	Karen Pollonts	403 750 9201	Calgary	Зу	\$92.75
	7	Susan Willcox	780 291 6063	Edmonton	2y	\$131.00
	3	John Simon	780 886 5053	Edmonton	Зу	\$189.45
	17	Wayne Jones	780 236 3006	Edmonton	3у	\$236.06
	15	Brent Mavka	403 566 7372	Calgary	2y	\$299.29
/	6	Mary Tasear Smith	780 334 3434	Edmonton	3у	\$369.00
	16	Brian Olso	403 939 7574	Calgary	Зу	\$430.78
				on	3у	\$459.37
				nn	31/	\$542.00

Plan Avg. 3m Profit
3y (\$26.23)
2y (\$12)
3y \$0.96
3y \$8.00
3y \$33.79
3y \$38.78
1y \$50.18

Not

enough

Assumption:

Customers are independent Values are identically distributed

34 customers up for plan renewal Which one to renew?

403 75

403 64

403 77

Which one to give incentive to stay?

Sort by profit in the last 3 months

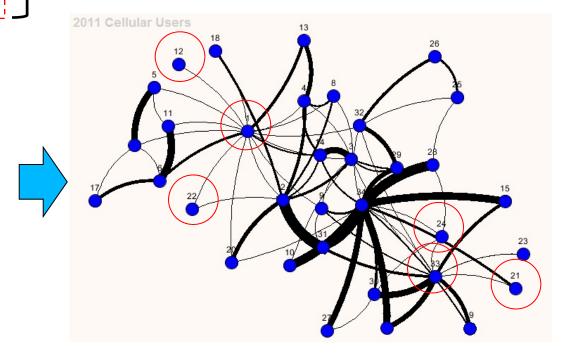
Do not renew or give incentive if profit < \$50 (?)

\$628.01 \$673.38

\$983.12

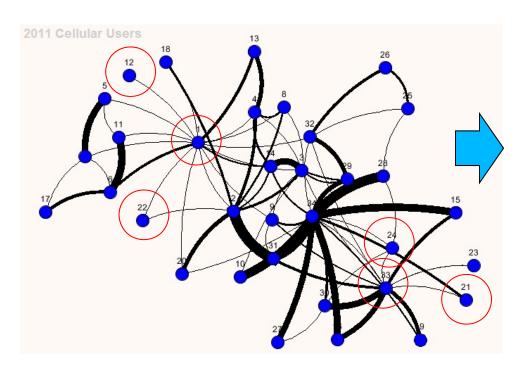
\$1,044.48

חו	Name	Phone Number	City	Plan	Avg. 3m Profit
_	Ben Rikon	403 262 3134		3у	(\$26.23
	John Smith	647 225 8085		2y	(\$12
	Natalie May	403 409 6223		3y	\$0.90
	Wilma Renton	780 118 2388		3y	\$8.00
	Patrick Klum	403 337 9291		3y	\$33.7
	Kent Wafegert	647 631 0348		3y	\$38.7
ı	Patty Klien	780 550 1819		1y	\$50.1
	Aly Huffington	403 255 0304		3y	\$55.0
	Iris Cristle	403 644 1423	., .	3y	\$64.1
	Fred Couros	416 773 2234	., .	3y	\$73.2
	Ryan Waters	403 715 7550		3y	\$75.5
	Randy Regal	705 234 6767		3y	\$77.1
	Gunther Twallaby	403 778 6040		3y	\$78.3
	Maggie Wong	226 882 0911		2y	\$89.1
	Jun Liu	226 690 4241		3y	\$90.4
	Wanda Rhymes	403 441 2534		3y	\$92.0
	Karen Pollonts	403 750 9201		3y	\$92.7
	Susan Willcox	780 291 6063		2y	\$131.0
3	John Simon	780 886 5053	Edmonton	3y	\$189.4
	Wayne Jones	780 236 3006	Edmonton	3y	\$236.0
	Brent Mavka	403 566 7372		2y	\$299.2
6	Mary Tasear Smith	780 334 3434		3y	\$369.0
	Brian Olso	403 939 7574		3y	\$430.7
8	Martha Witherby	780 322 9768	Edmonton	3y	\$459.3
14	Kim Cho	780 434 2399	Edmonton	3y	\$542.0
20	Morris Slevchuk	780 434 6280	Edmonton	3у	\$628.0
	Jane Smith	780 233 5645	Edmonton	2y	\$673.3
2	Joe Burns	416 345 6060	Toronto	3y	\$724.0
19	Greg Aderan	403 332 7468	Calgary	3у	\$746.8
13	Megan Potink	780 432 5623	Edmonton	Зу	\$802.0
11	Kurt Locke	780 654 1121	Edmonton	Зу	\$830.0
10	Julie Austinshaur	403 223 7654	Calgary	3у	\$983.1
31	Monica Kwalshuck	403 210 4448	Calgary	3у	\$1,044.4
	Joe Garther	416 224 1109		Зу	\$1,100.1

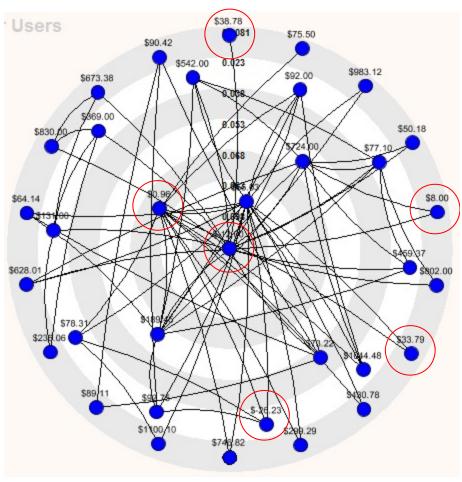


34 customers up for plan renewal Which one to renew? Which one to give incentive to stay?

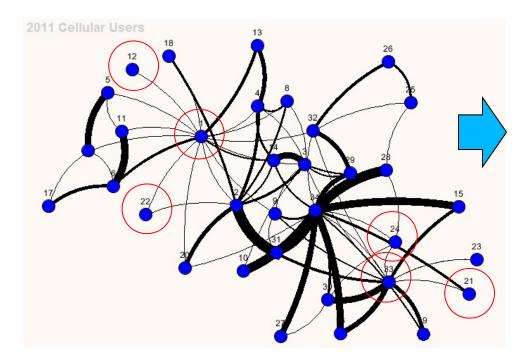
Inter-call network with call frequency



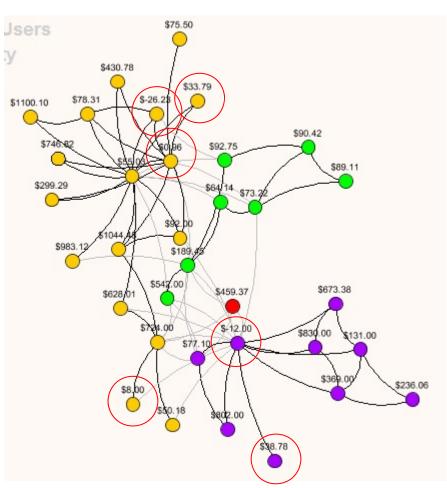
Inter-call network with call frequency



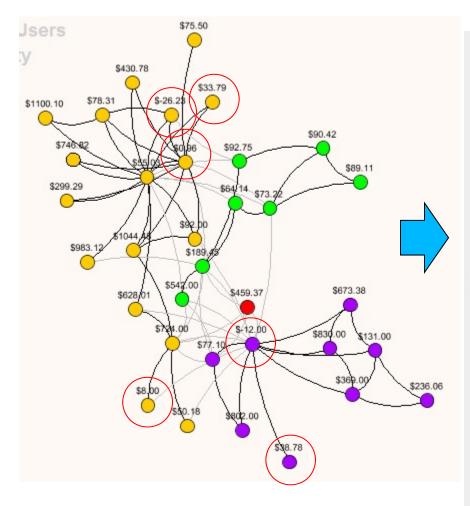
Global centrality based PageRank



Inter-call network with call frequency



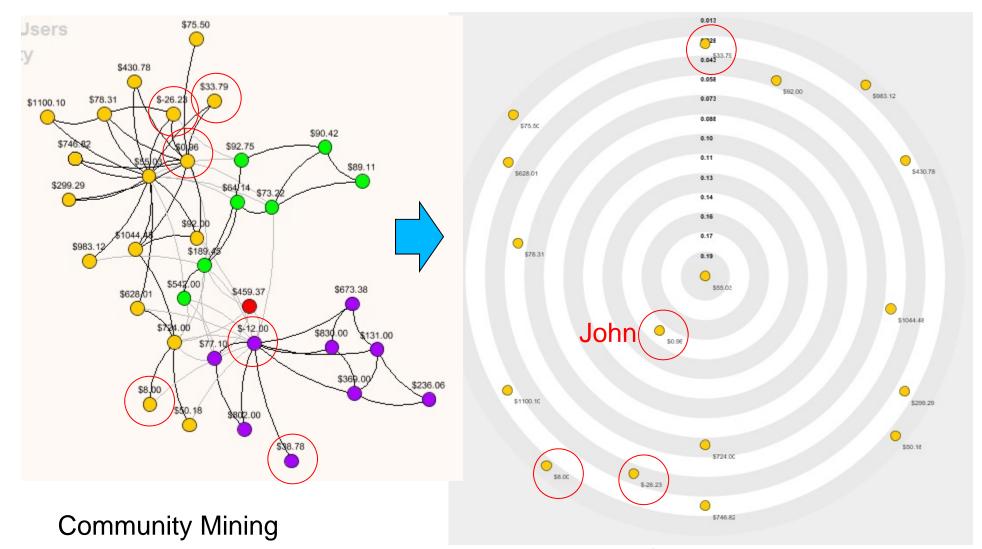
Community Mining



Natalie

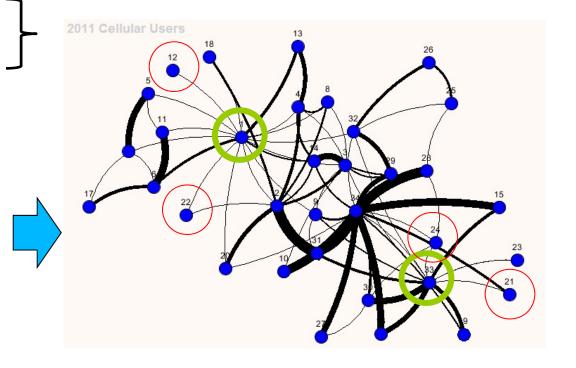
Community Mining

Centrality per community Dropping Natalie: Risk = \$3145.32



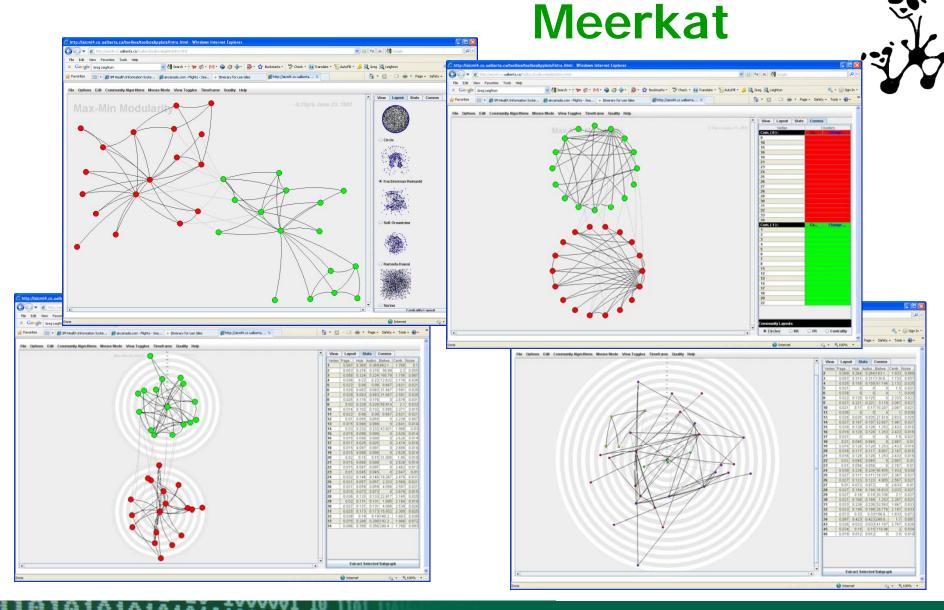
Centrality per community Dropping John: Risk = \$6324.14

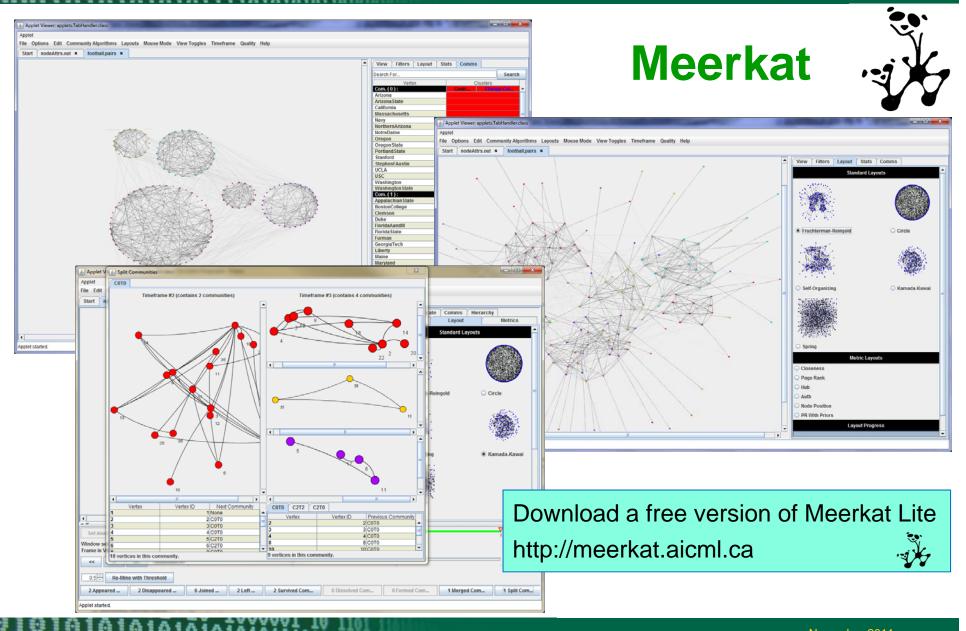
חו	Name	Phone Number		City	Dlan	Avg. 3m Profit
	Ben Rikon	403 262			3y	(\$26.23
_	John Smith	647 225			2y	(\$12
	Natalie May	403 409			3y	\$0.9
	Wilma Renton			Edmonton	3y	\$8.0
	Patrick Klum	403 337			3y	\$33.7
	Kent Wafegert	647 631			3y	\$38.7
	Patty Klien		_	Edmonton	1y	\$50.1
	Aly Huffington	403 255	0304	Calgary	3y	\$55.0
	Iris Cristle	403 644			3y	\$64.1
32	Fred Couros	416 773			3y	\$73.2
	Ryan Waters	403 715			3y	\$75.5
4	Randy Regal	705 234	6767	Toronto	3y	\$77.1
30	Gunther Twallaby	403 778	6040	Calgary	3у	\$78.3
26	Maggie Wong	226 882	0911	Toronto	2y	\$89.1
	Jun Liu	226 690	4241	Toronto	3y	\$90.4
9	Wanda Rhymes	403 441	2534	Calgary	3y	\$92.0
28	Karen Pollonts	403 750	9201	Calgary	3у	\$92.7
7	Susan Willcox	780 291	6063	Edmonton	2y	\$131.0
3	John Simon	780 886	5053	Edmonton	3y	\$189.4
17	Wayne Jones	780 236	3006	Edmonton	3у	\$236.0
15	Brent Mavka	403 566	7372	Calgary	2y	\$299.2
6	Mary Tasear Smith	780 334	3434	Edmonton	3у	\$369.0
16	Brian Olso	403 939	7574	Calgary	Зу	\$430.7
8	Martha Witherby			Edmonton	3у	\$459.3
14	Kim Cho	780 434	2399	Edmonton	3у	\$542.0
20	Morris Slevchuk	780 434	6280	Edmonton	3y	\$628.0
5	Jane Smith	780 233	5645	Edmonton	2y	\$673.3
2	Joe Burns	416 345	6060	Toronto	Зу	\$724.0
19	Greg Aderan	403 332	7468	Calgary	Зу	\$746.8
13	Megan Potink	780 432	5623	Edmonton	3у	\$802.0
11	Kurt Locke	780 654	1121	Edmonton	3y	\$830.0
10	Julie Austinshaur	403 223	7654	Calgary	Зу	\$983.1
	Monica Kwalshuck	403 210			3у	\$1,044.4
27	Joe Garther	416 224	1109	Toronto	3у	\$1,100.1



34 customers up for plan renewal Which one to renew? Which one to give incentive to stay?

Give incentives to 1 (John Smith -\$12) and 33 (Natalie May \$0.96) to stay but let the others go.





What is Social Network Analysis?

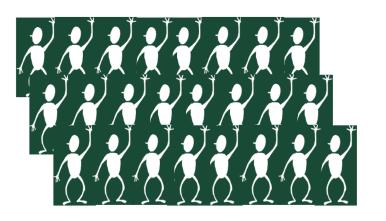
- [Wikipedia] A social network is a social structure made of nodes (which are generally individuals or organizations) that are tied by one or more specific types of interdependency, such as values, visions, ideas, financial exchange, friendship, sexual relationships, kinship, dislike, conflict or trade.
- Social Network Analysis (SNA) is the study of social networks to understand their structure and behaviour.
- Which node is the most influential? which one is central? What are the hubs? What are the groups? Who knows who?, What are the short paths? What is perceived by who? ...

Example of How SNA can Improve Existing Applications: Recommending a Book

Collaborative filtering: The basic idea is that people are recommending items to one another.

Example of How SNA can Improve Existing Applications: Recommending a Book

- Build a user profile for user u;
- Predictions for unseen (target) items are computed based the other users' with similar interests on items in user u's profile



At the heart of Recommender Systems are Collaborative Filtering Algorithms that rely on correlation between individuals

Ratings of Books	1	2	⊘ 3	4	5	6	7	8
Jane	5	3	3	4	2	1		
Alexander	3	4	2	3	4	5	1	3
Amelia	4	3	1	2	4	2	4	1
Duncan	4	2	1	3	4	1	5	2

Jane & Duncan: correlation = .52

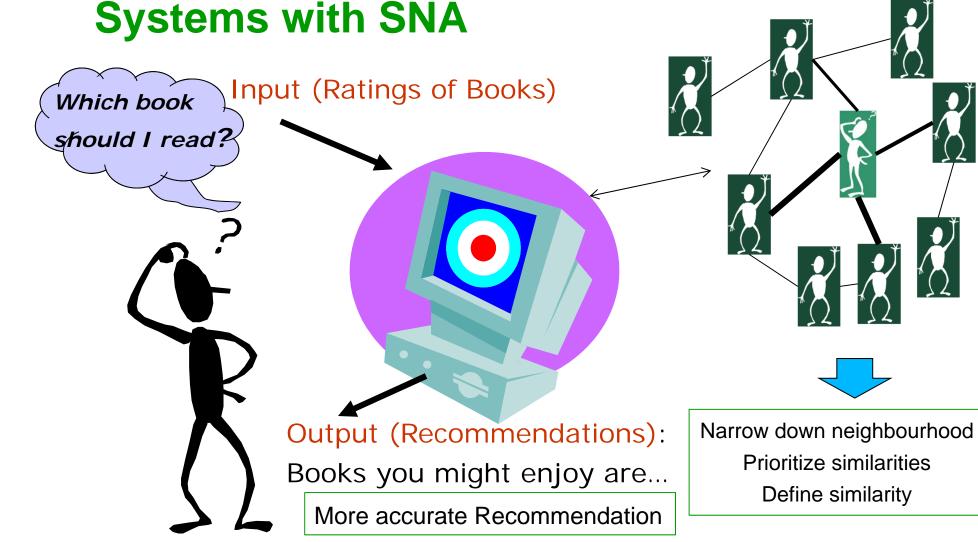
■ Jane & Alexander: correlation = -.67

Recommendations for Jane:

Book 7

Jane & Amelia: correlation = .23

Interaction Paradigm of Recommender



A quick History

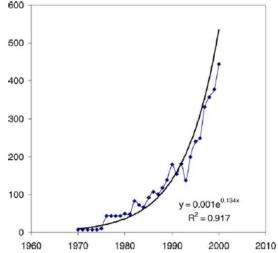
- Social network analysis is a key technique traditionally studied in sociology, anthropology, epidemiology, sociolinguistics, psychology, etc. Today it is a modern technique in marketing, economics, intelligence gathering, criminology, medicine, computer science, etc.
- J. Barnes is credited with coining the notion of social networks (theory) in

 S.P. Borgatti, P.C. Foster / Journal of Management 2003 29(6) 991–1013

1954 (sociometry, sociograms).

 Precursors of social network theory date from the century such as Simmel, Durkheim and Tönnies.

- Massive increase in studies of social networks social sciences) since the 1970s.
- The increase of available data, the Internet phenomenon, Web 2.0, etc. have only catapulted the interest in SNA research



Networks in Social and Behavioral Sciences

Social Networks

[Monge, and Contractor, 2003]

- Who knows who?
- Socio-cognitive Networks
 - Who thinks who knows who?
- Knowledge Networks
 - Who knows what?
- Cognitive Knowledge Networks
 - Who thinks who knows what?
- Socio-centric Analysis
 - Emerged in sociology: quantification of interaction among a group of people. Focus on Identifying global structural patterns in a network.
- Ego-centric Analysis
 - Emerged in psychology and anthropology: quantification of interaction between an individual (ego) and others (alters) directly or indirectly related to ego.

Reality	Social Network	Knowledge Network
Perception	Socio- cognitive	Cognitive knowledge
A	Network cquaintance	Network knowledge

Popularization

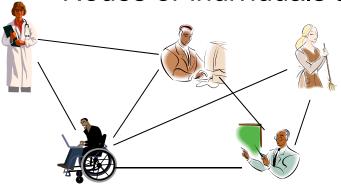
- Six degrees of separation (Chains by Frigyes Karinthy 1929) Hypothesized: modern world was 'shrinking' due to the ever-increasing connectedness of human beings. Used the idea of six degrees of freedom in mechanics.
- Milgram's Paradox: Small world effect (Stanley Milgram, 1967) Famous experiment in 1970 sending letters from Omaha to Boston 64/296 arrived. Average path 5.5~6.
- Google's PageRank (1998) uses a network of web page « citations » to estimate the importance of pages and rank them.
- Internet social networking tools
- Research team in Milan finds degree of separation = 4.74 using 721 million FB users (4.37 in USA). NYT Nov. 2011

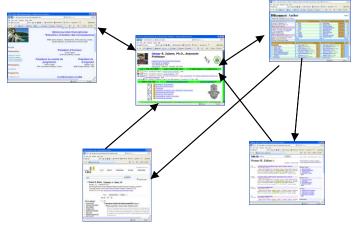
http://www.nytimes.com/2011/11/22/technology/between-you-and-me-4-74-degrees.html?_r=1

Types of Relations and Networks (1)

Unique relation networks

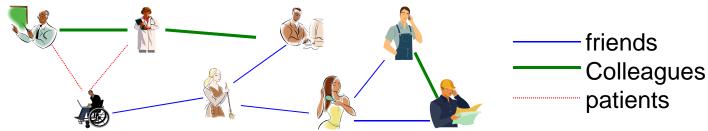
Nodes or individuals are tied by the same relation





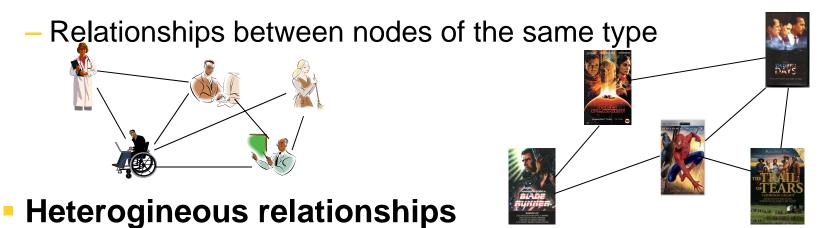
Multiple relation networks

Nodes or individuals are tied by different kinds of relationships



Types of Relations and Networks (2)

Homogineous relationship



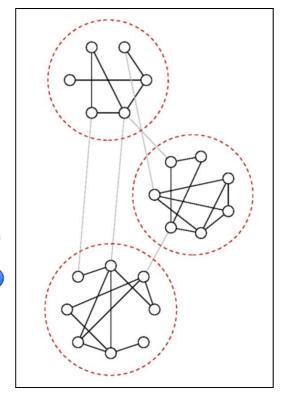
Relationships between nodes of different types

Some Key Concepts

- Edge Weight: interaction frequency, importance of information exchange, intimacy, emotional intensity, etc.
- Symmetric relation or not (directional)
- Centrality: determines the relative importance of a vertex (or edge) within a network.
 - Degree Centrality: Mesures the normalized number of edges incident upon a node n;
 - Betweeness Centrality: Measures how many times a node n occurs in a shortest path between any other 2 nodes in the graph;
 - Closeness Centrality: Mean shortest path distance between a node n and all other nodes reacheable from it;
 - Eigenvector Centrality: Measures importance of a node n by assigning a score to each node based on the principal that connections to high-scoring nodes contribute more to the score of a node in question than equal connections to low-scoring nodes (e.g. PageRank).
- Peripheral nodes and outliers
- Communities

Some Typical Operations

- Visualization of networks
- Filtering/Querying (selecting specific nodes and or edges)
- Finding central nodes (Centrality)
- Ranking nodes
- Finding peripheral nodes
- Community mining
- Discovering outliers
- Predicting unobserved edges
- Discovering dynamics in time

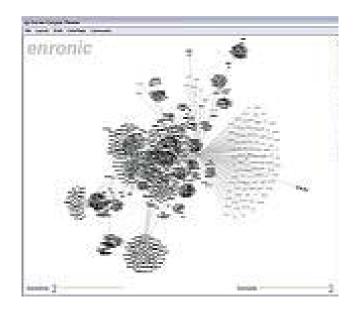


Individual

The famous case of Enron

Enron E-mail data made public

- 151 users
- 200,399 e-mail messages



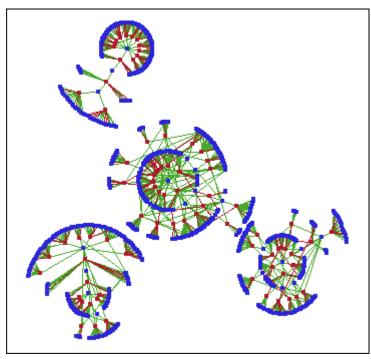
Visualization of Enron's email network, Jeffrey Heer, 2005

- Modeling a Socio-Cognitive Network
- Quantitative Measures for Perceptual Closeness
- Automatic Extraction of Concealed Relations

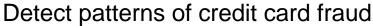
– ...

Social Network Analysis to Identify Suspicious

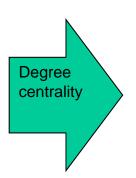
Merchants

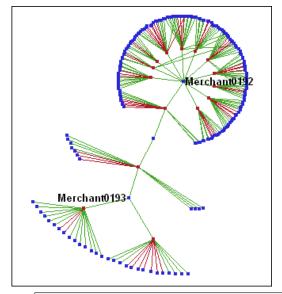


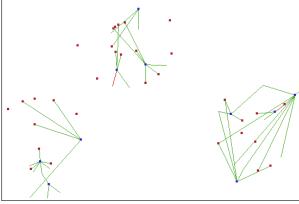
Blue nodes correspond to merchants, red nodes correspond to customers. Each link represents a transaction between a customer and a merchant. Green links correspond to valid transactions, red links correspond to fraudulent transactions



Example from SAS







Identify merchants that warrant additional scrutiny with regard to fraudulent credit card transactions

Terrorism and crimes

Applications of SNA

 Social Network analysis is an important part of a conspiracy investigation and is used as an investigative tool. Group structure may be important to investigations of racketeering enterprises, narcotics operations, illegal gambling, and business frauds.

Medicine – epidemiology

 valuable epidemiological tool for understanding the progression of the spread of an infectious disease.

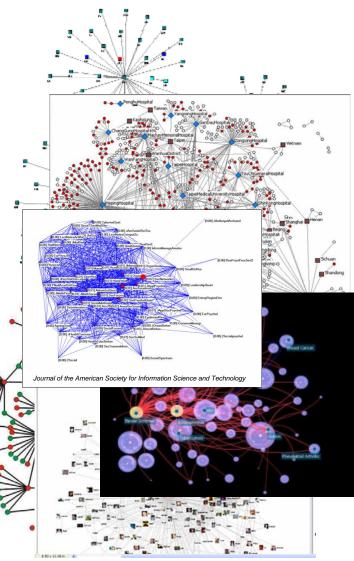
Marketing

 Emarketer projected that Social Network Marketing spending in the USA will reach approximately \$1.3 billion in 2009. http://www.emarketer.com/Reports/All/Emarketer_2000541.aspx

Product Recommendation

Current recommendation models assume all users' opinions to be independent.
 Use of SNA relaxes the iid assumption.

- Bio-informatics (protein interaction)
- Relevance Ranking
- Information and Library Science



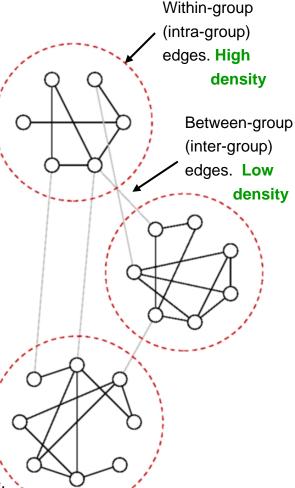
What is Community Structure?

- Community structure denotes the existence of densely connected groups of nodes, with only sparser connections between groups.
- Many social networks share the property of a community structure, e.g., WWW, tele-communication networks, academic collaboration networks, friendship networks, etc.

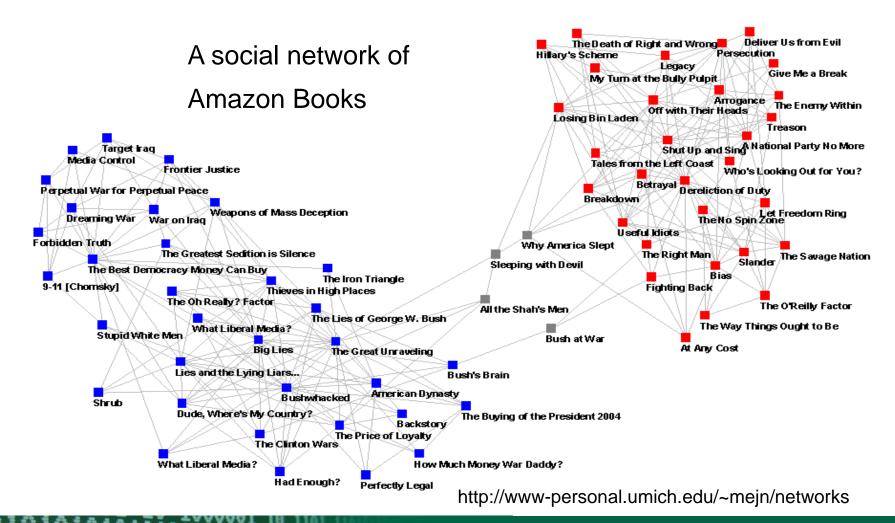
Many similarities with data Clustering

Clustering is dividing the data points into classes according to some similarity measure.

Community structure: dividing the network into groups according to structural info.(connectivity).



Community Structure Examples



O.R. Zaïane © 2011

Modularity Q

- Proposed by Newman and Girvan in 2004 as a measure of the quality of a particular division of the network.
- a good division of a network is not merely one in which the number of edges in groups is large, but it is one in which the number of edges within groups is larger than expected.
- Q is the number of edges within communities minus the expected number of such edges
- Intuition: compare the division to a random network with same nodes and same degrees, but edges are placed randomly.
- Greedily maximizing Q outperformed all other methods, in most cases by an impressive margin, for community detection.

On Real Networks?

Most of these approaches require knowledge of the entire network structure, e.g., number of nodes/edges, number of communities in the network. However, this is problematic for networks which are either too large or dynamic, e.g., the WWW.

The size of the WWW 1 trillion unique URLs. The index size of Google is about 40 billion. (2008 stats)

http://www.techcrunch.com/2008/07/25/googles-misleading-blog-post-on-the-size-of-the-web/

Facebook has more than 500 million active users. (2010 stats)

http://www.facebook.com/press/info.php?statistics

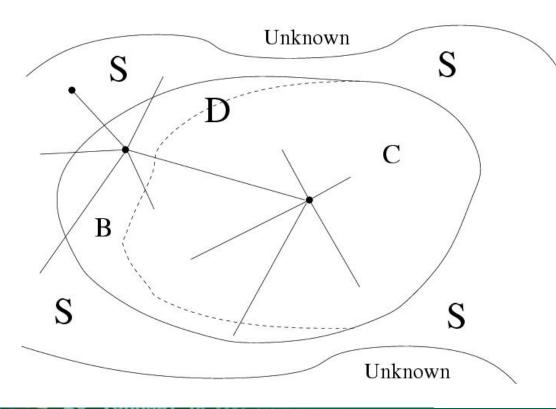
■ Vodafone has 289 million customers worldwide. (2009 stats)

http://www.vodafone.com/start/media_relations/news/group_press_releases/2009/mobile_internet_experience.html

Local Methods

Typical Problem Definition

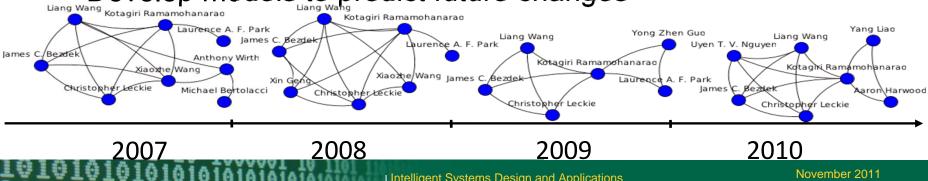
- A local community D includes cores (C) nodes and boundary (B) nodes.
- If one new node is merged, its neighbours are added into shell nodes (S).



Maximize within edges of boundary nodes divided by total edges of boundary nodes Or maximize *average* internal degree (id) inside the whole community and minimize *average* external degree (ed) of boundary nodes, by maximizing id/ed (density)

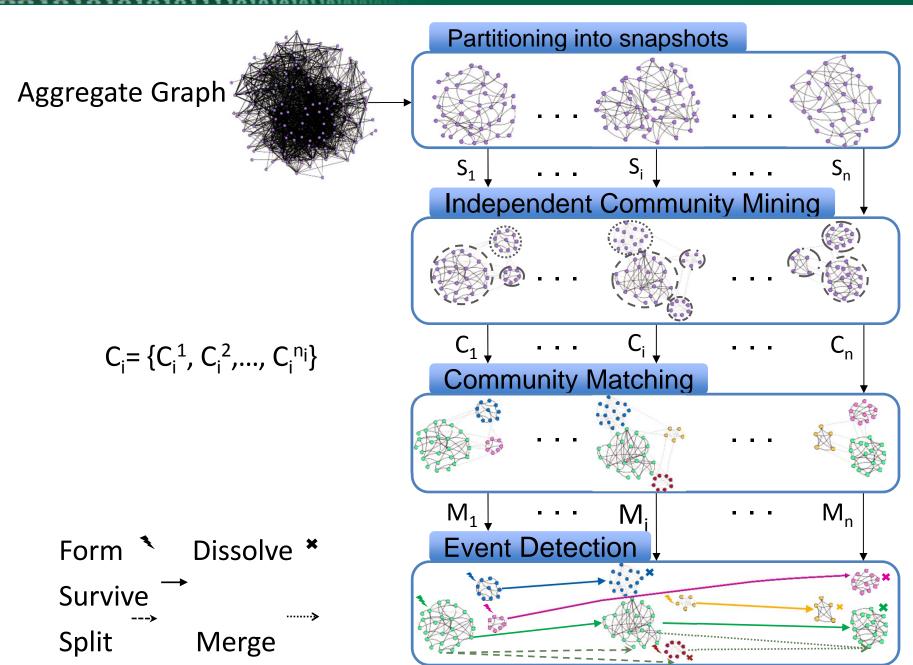
Dynamic Networks

- Many real-world social networks are dynamic
 - Nodes and interactions change over time
 - Structure of communities evolves over time
- Dynamic Social Network Analysis
 - Model network using time series graphs
 - Characterize evolution of communities and entities



MODEC Framework

- <u>Modeling and Detecting the Evolutions of Communities</u>
- Communities are independently extracted in each snapshot
- A one-to-one matching algorithm is applied to match communities at different snapshots
- Significant events are identified to track the evolution of communities and individuals

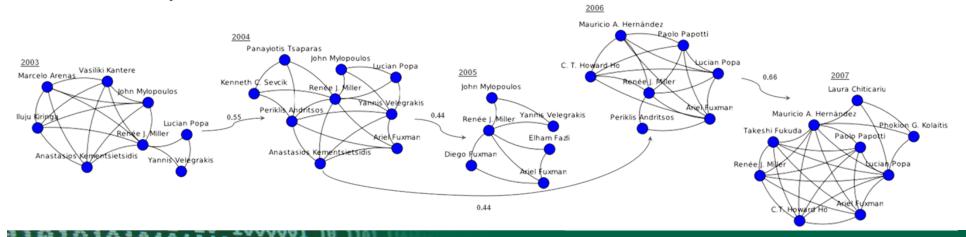


Community Similarity

- Two communities at different snapshots are similar if the percentage of their mutual members exceed a given threshold kC[0, 1]
- $sim(C^p, C^q) =$ $\begin{cases} \frac{|V^p \cap V^q|}{\max(|V^p|, |V^q|)} & if \quad \frac{|V^p \cap V^q|}{\max(|V^p|, |V^q|)} \ge k \\ 0 & otherwise \end{cases}$
- The similarity threshold k captures the tolerance of member fluctuation

Community vs. Meta Community

- Community
 - Densely connected individuals at a particular snapshot
 - Result of any static community mining algorithm
- Meta community
 - Series of similar communities from different snapshots
 - Represents the evolution of its constituent communities



Events Involving Communities

- A community forms
 - if there is no similar community at a previous snapshot
- A community survives
 - if there exists a similar community in a future snapshot
- A community dissolves
 - if there is no similar community at a later snapshot
- A community splits
 - if it fractures into multiple communities at a later snapshot
- Two or more communities merge together
 - if they integrate into one community in a future snapshot

Transitions Involving Communities

Size Transition

- A community shrinks if its number of nodes decreases
- A community expands if its number of nodes increases

Compactness Transition

- A community compacts if its normalized number of edges increases
- A community diffuses if its normalized number of edges decreases

Persistence Transition

A community persists if its number of nodes and edges remains the same

Leader Transition

 A community experiences leader shift if its most central member shifts from one node to the other

Events Involving Individuals

- A node appears
 - if it was not present in a previous snapshot
- A node disappears
 - if it will not occur in a later snapshot
- A node joins to a community
 - if it did not belong to a similar community in a previous snapshot
- A node leaves a community
 - if it will not belong to a similar community in a later snapshot

O.R. Zaïane © 2011

Optimal Bipartite Matching

```
for all snapshots i
    remaining_communities ← communities at snapshot i
    clear selected_meta_communities
    j ← i-1
```

while j >= 0 && size of remaining communities > 0

Construct weighted bipartite graph with remaining_communities and communities at snapshot j whose meta community is not in selected meta_communities

Weighted bipartite

Match communities by the maximum weight bipartite matching

Matching based on for all communities c with detected match m

community similarity

Results of matching are used to update

Add c to meta community of m

Remove c from remaining_communities

Add meta community of m to selected_meta_communities

meta

end

end

.01010101010101010

communities

for all communities c at remaining_communities

Create meta community m

Add c to m

j ← j -1

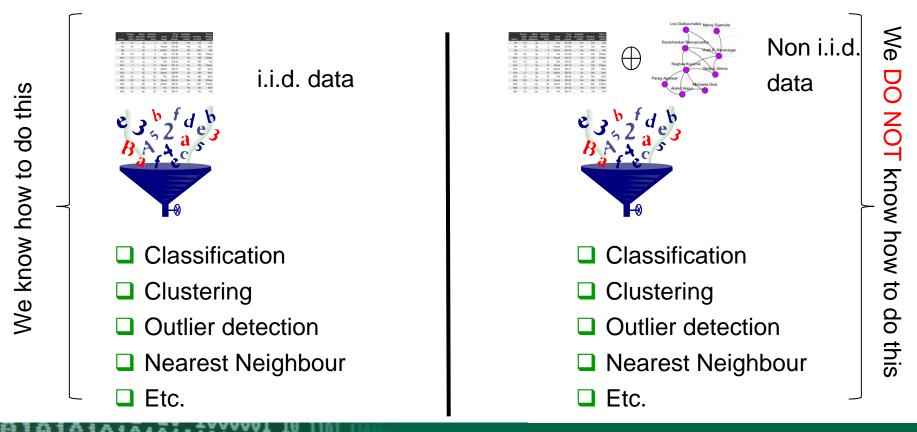
end

end

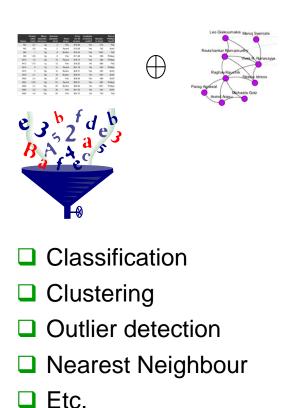
New meta communities are created for communities at snapshot 0 or communities left with no match

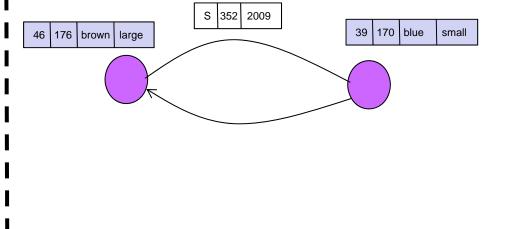
November 2011

Machine Learning with relationships



Machine Learning with relationships

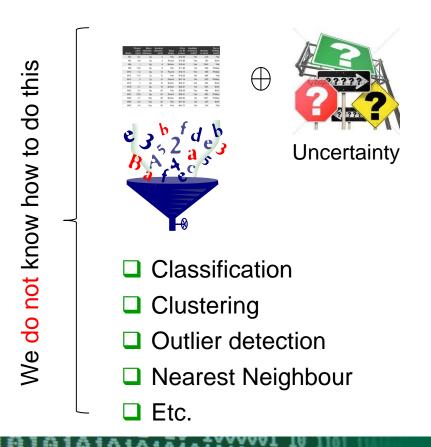




Not only nodes have attributes but relationships may have attributes.

Relationships may be directional.

Probabilistic Databases and Probabilistic Information Networks



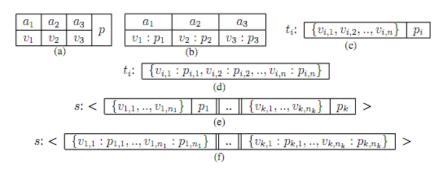
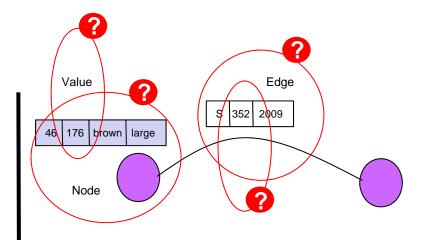


Figure 1.2: Some of the possible models for uncertainty in databases and sequential datasets: (a) A tuple with record-level uncertainty; (b) A tuple with attribute level uncertainty; (c) A transaction with transaction-level uncertainty; (d) A transactions with item-level uncertainty; (e) A sequence with transaction-level uncertainty; (f) A sequence with item-level uncertainty.

Probabilistic Databases and Probabilistic

Information Networks

Uncertainty Classification Clustering Outlier detection ■ Nearest Neighbour Etc.



How to compute

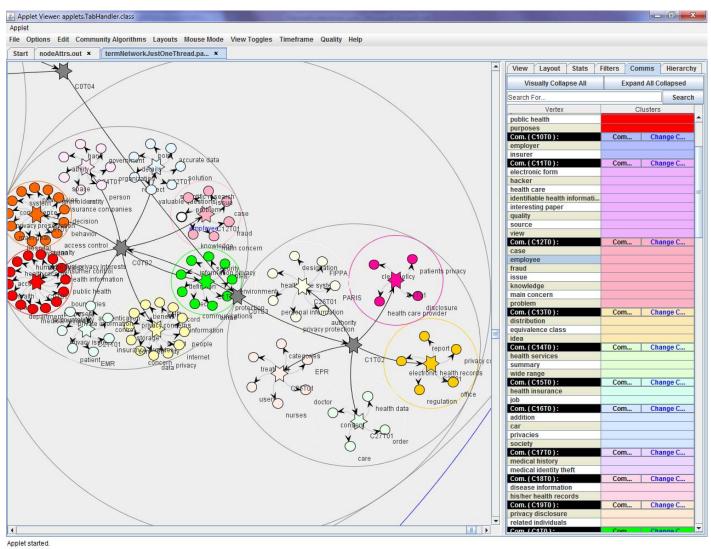
- Network diameter
- Shortest path
- Centrality
- Find communities

Conclusions

- Social Network Analysis is not a new science and is even more useful nowadays given the inter-related and complex data we are collecting.
- Applications in epidemiology, biomedicine, security, marketing, Psychology, Animal behavior, etc.
- Social network analysis, while a century old, in computer science it is still
 in its infancy. There are myriad open problems for which solutions would
 be relevant to countless applications.
- Opportunities for research in SNA with heterogeneous as well as homogeneous information networks.
- Opportunities for research in probabilistic information networks
- Opportunities for research in SNA for discovering patterns in dynamic networks

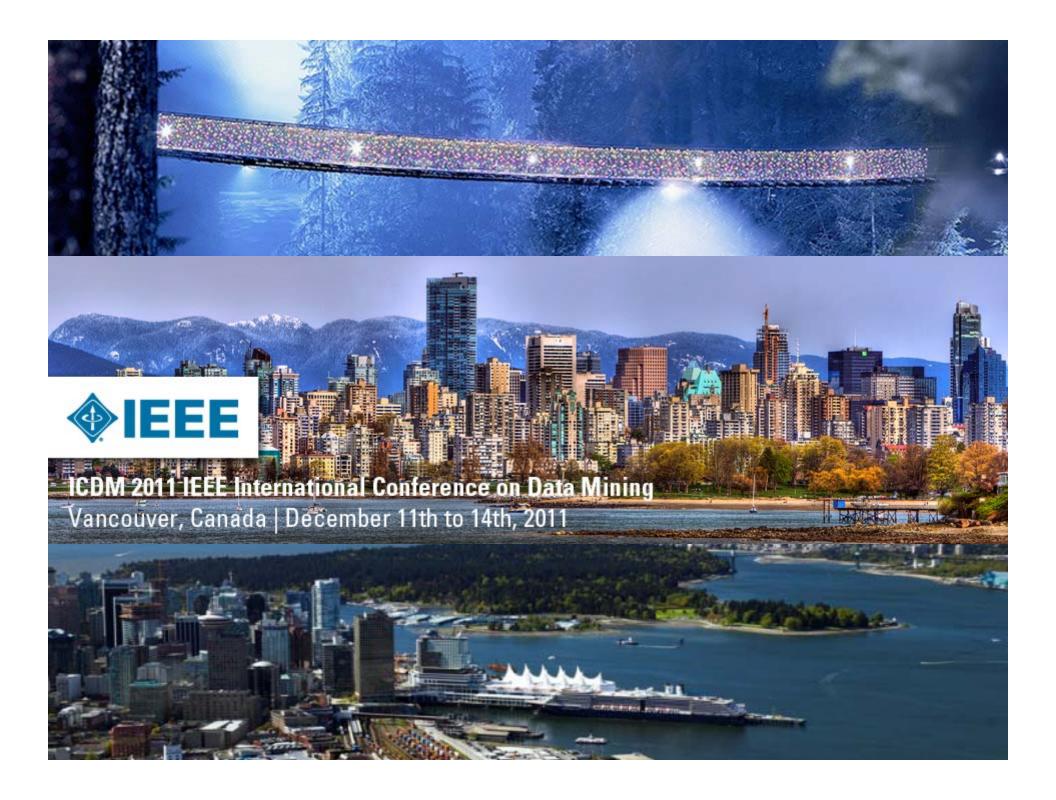
Meerkat: Topic (term community) Hierarchy

MeerkatED

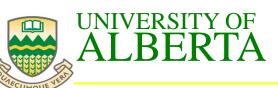


Thank you to

- Jiyang Chen
- Justin Fagnan
- Reihaneh Rabbany
- Farzad Sangi
- Mansoureh Takaffoli
- Eric Vorbeek



Thank you – Questions?



Osmar R. Zaïane, Ph.D.
McCalla, Killam Professor
Department of Computing Science

443 Athabasca Hall Edmonton, Alberta Canada T6G 2E8 Telephone: Office +1 (780) 492 2860

Fax +1 (780) 492 1071

E-mail: zaiane@cs.ualberta.ca http://www.cs.ualberta.ca/~zaiane/