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Abstract: We are studying image-based fish identification.
Most traditional approaches use a fish image wherein extrac-
tion is easy given that the fish region contrasts with a white or
uniform background. This research introduces an approach to
give several feature points by manual operation. In our pro-
posed approach, we are able to accept fish image with compli-
cated background, including rocky area. Further, to investigate
efficient features for fish recognition in image, we define vari-
ous features, including geometric features, bag of visual word-
s (BoVW) models, and texture features. We collected images
comprising 129 fish species under various photographic condi-
tions and applied our proposed method to these images. From
our results, we confirmed that a combination of geometric fea-
tures and BoVW models obtained the highest recognition accu-
racy.
Keywords: Fish image, feature points, geometric features, bags of
visual word models, texture features.

I. Introduction

In our daily travels, we often encounter a large number of
natural objects, such as plants, fishes, animals, and birds.
With the rapid increase in the number of mobile terminals
(e.g., tablets and smartphones), taking pictures of such natu-
ral objects has become increasingly easy. As such, there has
been a number of recent works concerned with image-based
recognition of natural objects. With respect to image-based
recognition of natural objects, many researchers are interest-
ed in identifying flowers[1, 2], leaves[3, 4, 5], and birds[6, 7];
however, there is relatively little research on image-based
fish recognition. We conclude that collecting large numbers
of fish images is a difficult task because fish move quickly
from one location to another. Furthermore, fish live in water,
which is a more difficult medium for photographs.
From a social perspective, the habitat distribution of fish
is changing due to the influence of global warming. Fur-
thermore, poisonous fish that did not previously inhabit cer-
tain environments have been witnessed in those environ-
ments. Some poisonous fishes can appear quite similar to
non-poisonous fishes. Differentiating fish species here is
sometimes difficult for specialists and certainly for amateurs,
thereby leading to accidents in which poisonous fish are eat-
en by mistake.
Belhumeur et al. report on a computer vision system they
built to aid in the identification of plant species [3]. Their

system requires the user to photograph an isolated leaf a-
gainst a white background. The surprising contribution of
their research is the use of over 200 species in their dataset-
s. Moreover, their project team developed an electronic field
guide application for iPhone and iPad called LeafSnap [4]
that encouraged us to develop an image-based fish recogni-
tion system. Fish can be identified using our system.
The key contributions of our work, which are presented in
this paper, are as follows.

• We propose a fish image recognition method using
feature points for fish images with complicated back-
grounds.

• We investigate efficient features for fish recognition.

• We collect fish image dataset larger-scale than other s-
tudies.

The remainder of our paper is organized as follows. In Sec-
tion II, we introduce related research. Next, in Section III,
we describe our dataset. In Section IV, we describe the nec-
essary preprocessing before we are able to extract features.
In Sections V and VI, we describe recognition features and
recognition method, respectively. Experimental results are p-
resented in Section VII. Finally, in Section VIII, we present
our conclusions and future work.

II. Related research

In this section, we briefly introduce research related to our
work. Table 1 summarizes related research, all of which is
further described below.
Storbeck and Daan propose an image-based fish species
recognition method [8]. Their vision system measures a
number of fish features, as seen by a camera perpendicular
to a conveyor belt. The specific features here are the width-
s and heights at various locations along the fish, which are
then used as input values to a neural network. The number of
species considered here is only six.
Chambah et al. propose an automatic color equalization
model based on a color correction method [9]; they apply
their method to an underwater fish image to segment fish re-
gions. Their project focuses on developing an information
system for aquariums. They calculate various features, in-
cluding geometric, color, texture, and motion features. A
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Table 1: Summary of related research.
target images # of species # of samples year

[8] fish on conveyor belt 6 502 2001
[9] underwater fish image 12 1,346 2003
[10] unknown 20 610 2009
[11] underwater fish image 10 3,179 2012
[12] fish in a tank at the aquarium 20 200 2012
[13] white background 30 900 2013
[14] SQUID[15] 20 1,100 2015
[16] underwater fish image (FishCLEF-31K) 10 31,397 2015
Ours natural background 129 2,580 2016

feature reduction process is also applied to eliminate useless
or redundant features. Further, a quadratic Bayes classifier is
used to classify selected fish into one of the learned species.
In their experiments, they collected 12 fish species and 1,346
samples.
Alsmadi et al. propose a system for recognizing isolated pat-
terns of fish [10]. In their method, the given input fish im-
age is first cropped to remove the ventral part of the pattern
of interest, and then, a color histogram is calculated. From
this histogram, three features (i.e., standard deviation, ho-
mogeneity, and energy) are extracted from the gray-level co-
occurrence matrix (GLCM); further, two features of median
and variance values are directly calculated. The multilayer
feed forward neural network model with a back-propagation
classifier is then employed for the classification task. The
number of species in their research is 20.
Huang et al. propose a hierarchical classification method for
live fish recognition in an unrestricted natural environment
recorded by underwater cameras [11]. In this method, the
Grabcut algorithm is first employed to segment fish from the
background. Next, their method extracts 66 features, which
consist of a combination of color, shape, and texture features
from different parts of the fish. Their method also reduces the
number of feature dimensions via forward sequential feature
selection. The number of species in their research is ten, with
3,179 fish images.
Mushfieldt et al. study the foundations for an interactive sys-
tem at an aquarium that can recognize various fish species
and display instant information to users [12]. They propose a
preprocessing procedure to first segment the fish. A support
vector machine (SVM) is used to recognize 20 fish species
based on shape and color information.
Pornpanomchai et al. report on a computer system they de-
veloped that is capable of recognizing some fish images; their
system is called FIRS [13]. In their research, each fish image
is taken against a white plastic plate with fluorescent bulbs
below. Next, a thresholding method is applied to extract the
fish region. Eight features are defined, and an artificial neural
network is used for the recognition process. They conducted
their research on 30 fish species.
Nasreddine and Benzinou propose shape matching and
geodesics for fish recognition [14]. Their approach is in-
dependent of translation, scale, rotation, and starting point
selection. In their work, they carried out performance exper-
iments on a benchmark Shape Queries Using Image Databas-
es (SQUID) [15].
Spampinato et al. present a large dataset for the fine-grained
recognition problem of identifying fish species from images
and videos [16]. They developed an effective nonparamet-

(a) Non-target fish images (left: Japanese eel catfish, right:
hairtail).

(b) Target fish images (left: mottled spinefoot, right: redspotted
grouper).

Figure. 1: Fish images.

ric approach for automatic label propagation. The auto-
matically labeled dataset was used for benchmarking fish
species recognition approaches within the fish task of Life-
CLEF2014. The number of species is only ten, though the
number of samples is approximately 31,000.
Most traditional approaches use a fish image in which it
is easy to extract a fish region given a white or uniform
background. In our research, we adopt an approach that
presents several feature points based on manual operations
by the user. Our proposed approach is able to accept fish im-
ages with complicated backgrounds, including against rocky
backgrounds. Further, to identify efficient features for fish
recognition, we defined various features, including geomet-
ric features, bag of visual word (BoVW) models, and tex-
ture features. Moreover, in related research, the number of
species is consistently less than or equal to 30. Evaluation
experiments using such small-scale datasets yields low relia-
bility and is therefore not practical. Therefore, in our work,
we constructed a large-scale dataset as compared with the
related research and evaluated our proposed method.

III. Dataset

As described in Section II above, the number of species in
related research is consistently less than or equal to 30. It is
estimated that the number of fish species living in Japanese
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Figure. 2: 129 species of our dataset.
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Figure. 3: Image size distribution of our dataset.

rivers and seas is approximately 3,300. When a system as-
sumes a specific environment, such as an aquarium tank, a
small number of species is not a problem; however, in our
research, the target user is an angler, and thus we aim to in-
clude a large number of fish species in our dataset.
We therefore selected 129 species in the northern area of K-
itakyushu in Japan as the recognition targets. Sample fish
images of these 129 species are shown in Fig. 2. We collect-
ed 20 distinct samples for each of these species through the
Web. Note that all fish images were checked and confirmed
by experts. Here, since our proposed approach requires a va-
riety of feature points, fish that are difficult to input feature
points for are excluded, e.g., the elongated shape shown in
Fig. 1(a). Figure 1(b) shows sample target fish images used
in our research. We note here that the problem of identifying
oddly shaped fish species is not considered in this paper and
is an area for future work.
Since we collected fish images from the Web, the photog-
raphers and image sizes varied considerably. Among the
2,580 collected fish images, the size of the smallest image
was 144×108 pixels, whereas the maximum image size was
5, 184× 3, 456 pixels. The size distribution of our dataset is
shown in Fig. 3. In this distribution, the horizontal axis repre-
sents width, while the vertical axis represents height. Thus,
small sample images are plotted in the lower left, whereas
large sample images are plotted in the upper right. The aver-
age size here was 692× 425 pixels.

IV. Preprocessing

A. Feature points

Since target fish images used in our research are primarily
pictures taken in natural conditions, the boundaries between
the fish region and background is unclear, and it is difficult to
automatically extract the fish region. Our proposed method
adopts a feature points-based approach consisting of the fol-
lowing four points: mouth P1; dorsal fin P2; caudal fin P3;
and anal fin P4. Each of these is shown in Fig. 4. Note that
these points are manually provided by the user and are de-
signed as characteristic locations to avoid incorrect input by
users.

(a)

(b)

Figure. 4: Four feature points.

B. Normalization

As described in Section III above, the image sizes of our
dataset are not the same; further, the orientation of the fish is
not the same. These differences are inconvenient for calcu-
lating features. To address this, normalization processes for
both size and orientation are applied.
First, the direction of a fish image is arranged for feature ex-
traction. The fish shown in Fig. 4(a) is leftward, whereas the
fish shown in Fig. 4(b) is rightward; in this paper, all fish
image are arranged leftward based on the positional relation-
ship of P1 and P3. After arranging the direction, scaling and
rotation processes are applied.
For the scaling, the image is scaled such that the distance
between P1 and P3 is changed to L pixels. This means that a
scale s is calculated by as s = L/|P1−P3|. For the rotation,
the image is rotated such that the P1 and P3 are on the same
horizontal level. This means that orientation θ is calculated
as θ = tan−1 |P1,y − P3,y|/|P1,x − P3,x|. By using s and θ,
affine transformation is applied to the image

x′

y′

1

 =

s cos θ −s sin θ 0
s sin θ s cos θ 0

0 0 1

x
y
1

 ,

where (x, y) is an input coordinate and (x′, y′) is a corre-
sponding output coordinate.
Figure 5(a) shows fish images after applying the above scal-
ing and rotation transformations. Next, a rectangular region
identified by the white box is extracted as the target fish im-
age. Figure 5(b) shows example extracted fish images that
are used for the feature extraction process that follows.
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(a) After applying scaling and rotation transformations.

(b) Extracted fish image.

Figure. 5: Normalization process.

V. Features

In this paper, to identify efficient features, we define the
following three feature groups: geometric features; BoVW
model; and texture features.

A. Geometric features

Seven geometric features are defined based on the four fea-
ture points shown in Fig. 6; however, before describing ge-
ometric features, four lengths (L12, L13, L14, L24) between
two feature points, as shown in Figs. 6(a) and (b), are defined
as follows:

L12 = |P1 − P2|,
L13 = |P1 − P3|,
L14 = |P1 − P4|,
L24 = |P2 − P4|.

Further, three ratios are defined as:

AR = L24/L13,

Rdorsal = L12/L13,

Ranal = L14/L13.

Here, AR is an aspect ratio and Rdorsal and Ranal are posi-
tion ratios of the dorsal and anal fins, respectively.
The four angles shown in Fig. 6(c) are defined as:

θ1 = ̸ P2P1P4,

θ3 = ̸ P2P3P4,

θ2 = ̸ P1P2P3,

θ4 = ̸ P1P4P3,

where θ1, θ3, θ2, and θ4 are the head, tail, upper, and lower
side angles, respectively.

B. Bags of visual words model

The BoVW model is widely used for object recognition,
treating image descriptors as visual words. BoVW is a sparse

(a) Aspect ratio.

(b) Position ratios of dorsal and anal fins.

(c) Four angles.

Figure. 6: Geometric features.

vector of occurrence counts of a vocabulary of local features.
This representation can also be described as a histogram of
visual words. Here, the vocabulary is usually obtained by
vector-quantizing image features into visual words.
The BoVW framework has two stages: one for training and
one for testing. Each stage is further divided into two dis-
tinct steps. The first step in both stages is feature detection
and representation. The second step is to train the model to
predict the class label of new images in the testing stage. For
each test image, a local classification problem is construct-
ed by selecting only the nearest neighbors from the feature
space.
Here, local features are represented by local descriptors.
Popular local descriptors include SIFT [17], SURF, and HOG
[18]; in this research, we use SIFT to represent local descrip-
tors.
Several strategies of local feature detection are possible, in-
cluding: (1) random sampling, which calculates local fea-
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(a) Spotted pattern.

(b) Horizontally striped pattern.

(c) Vertically striped pattern.

Figure. 7: Various fish patterns.

tures at random points within the image; (2) sparse sampling
in which local patches are detected by interest point detec-
tors able to select salient regions, such as edges, corners, and
blobs; and (3) grid (or dense) sampling in which the image is
segmented into sub-regions by horizontal and vertical lines
according to a regular grid, extracting features in each fixed
sub-region.
Fish have a wide variety of patterns, including spotted, hor-
izontally striped, and vertically striped patterns, as shown in
Fig. 7. When sparse sampling is applied, the number of de-
tected feature points varies according to the pattern, and thus
we apply dense sampling, which requires two parameters,
i.e., scale Gs of each sample and distance Gd between two
samples (note that these two parameters are discussed in Sec-
tion VII below).
The most common quantization approach is k-means clus-
tering, primarily because of its simplicity and convergence
speed. In this paper, we apply k-means clustering to quan-
tize the feature space.

C. Texture features

In our research here, we compute the following well-known
texture features: local binary pattern (LBP) [19]; histogram
of oriented gradient (HOG) [18]; discrete cosine transforma-
tion (DCT); gray-level co-occurrence matrix (GLCM) [20];
run length matrix (RLM) [21]; and shape-pass nonlinear fil-
ter (NF) [22]. Each of these is described below.

1) Local binary pattern (LBP)

LBP is a simple yet very efficient texture operator [19]. LBP
captures the appearance of an image in a small neighborhood
around a pixel. It consists of a string of bits, with bits corre-
sponding to each of the pixels in the neighborhood. Each bit
is turned on or off depending on whether the intensity of the
corresponding pixel is greater than the intensity of the central

pixel.
In this paper, we use a 3 × 3 pixel neighborhood, and the
binary string of eight bits is quantized from zero to 255. LBP
values are computed for all pixels in the fish image, and LBP
values are pooled in a histogram with a dimension of 256.
This histogram of LBP values is then used as a feature.

2) Histogram of oriented gradient (HOG)

HOG is a feature descriptor for detecting objects [18] in
which images are divided into small connected regions called
cells; for each cell, we compute a histogram of gradient di-
rections or edge orientations for the pixels within the cell.
Each cell is discretized into angular bins according to the
gradient orientation. Each cell’s pixel contributes a weighted
gradient to its corresponding angular bin. Groups of adjacent
cells are considered spatial regions called blocks. The group-
ing of cells into a block is the basis for the grouping and nor-
malization of histograms. A normalized group of histograms
represents a block histogram. The set of block histograms
represents the descriptor. In our research, each target image
is resized to 64 × 64 pixels, and the cell size is set to 8 × 8
pixels.

3) Discrete cosine transformation (DCT)

DCT is one of an extensive family of sinusoidal transforma-
tions that is a popular technique for image and video com-
pression. The concept behind this transformation is to trans-
form a set of points from the spatial domain into an identical
representation in the frequency domain. The obtained DCT
coefficients are ordered using zigzag scanning. In this paper,
64 lower-frequency coefficients are used as features.

4) Gray-level co-occurrence matrix (GLCM)

GLCM is a matrix of how often a pixel with a specific gray-
level value occurs either horizontally, vertically, or diagonal-
ly in conjunction with adjacent pixels [20]. After calculating
a GLCM, several statistics can be calculated. In this research,
14 statistics are calculated, i.e., angular second moment, con-
trast, correlation, variance, inverse difference moment, sum
average, sum variance, sum entropy, entropy, difference vari-
ance, difference entropy, two information measures of cor-
relation, and maximum correlation coefficient; further, four
directions are considered (i.e., 0◦, 45◦, 90◦, and 135◦), and
thus 56 features are calculated.

5) Run length matrix (RLM)

A run length represents the number of pixels in a run, while
the run length value is the number of times such a run oc-
curs in an image. RLM is a matrix in which each element
p(i, j, θ) describes the total number of occurrences of runs of
length j at gray level i, in a given direction θ [21]. Similar
to the GLCM, five statistics are calculated, i.e., short run-
s emphasis, long runs emphasis, gray level non-uniformity,
run length non-uniformity, and run percentage; further, four
directions are considered (i.e., 0◦, 45◦, 90◦, and 135◦), and
thus, 20 features are calculated.
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1) black roof 2) white roof 3) black line 4) white line 5) black snake

6) while snake 7) black pepper 8) while pepper 9) cliff

Figure. 8: Nine shape-pass nonlinear filters.

Figure. 9: Three regions for texture features.

6) Shape-pass nonlinear filter (NF)

Tamura and Atoda propose shape-pass nonlinear filters in
which a natural texture is composed of a local shape; fur-
ther, they propose the nine shape bases shown in Fig. 8 [22].
In this paper, nine shape-pass nonlinear filters are applied to
each image, with the nine calculated values used as features.

7) Regions of interest

As noted above, fish have a number of various patterns, and
these patterns can differ for each part of the fish, i.e., for
its head, back, and abdomen. We assume these feature vari-
ations by calculating texture features from specific regions
that are subsets of the entire region. Thus, to calculate tex-
ture features, three square regions with sizes equal to s × s
pixels are defined around the following three points: head
side Q1; middle Q2; and tail side Q3. These ROIs are shown
in Fig. 9.

VI. Recognition method

Proposed by Breiman, random forest (RF) is an ensem-
ble training algorithm that constructs multiple decision trees
[23]. This strategy has recently attracted increasing inter-
est because it can be applied for classification, regression,
and unsupervised learning. This approach has several advan-
tages, including high levels of predictive accuracy delivered
automatically, resistance to overtraining, rapid training (even
with thousands of potential predictors), and diagnostics that
pinpoint multivariate outliers. In our research, we apply RF
as the recognition method with number of trees M experien-
tially set to 200 and maximum depth of each tree D experi-
entially set to 10.

VII. Experiments

Before performing recognition experiments, we first pre-
pared four feature points for all fish images. Several students
unfamiliar with fish completed this task in which all points
were provided manually. The normalization parameter L was

set to 640 pixels. From our results, the minimum, maximum,
and average heights after the normalization process were 48,
421, and 213 pixels, respectively.
In our dataset, the sample number of each species was 20.
We used the leave-one-out method, i.e., of the 20 samples for
each species, 19 samples represented the training set, while
the remaining sample was a test set. By varying one sam-
ple, the total number of recognition trials was 20 for each
species. The average recognition rate of 20 results was used
to calculate the resulting accuracy measures.

A. Recognition experiments using each feature independent-
ly

In our first experiment, we performed recognition experi-
ments using each feature independently.
For the seven geometric features, the recognition accuracies
of 48.5%, 75.5%, 84.1%, and 93.1% were obtained by con-
sidering only one, three, five, and ten candidates, respective-
ly.
As for the BoVW models, four scale parameter-
s Gs = {8, 12, 16, 32} and six distance parameters
Gd = {12, 14, 16, 18, 32, 64} were prepared, and 24 recog-
nition experiments were carried out. Here, the number of
visual words was experientially set to 300. Experimental
results are shown in Fig. 10, revealing that the highest
recognition rate of 53.2% was obtained when Gs = 12
pixels and Gd = 14 pixels.
For texture features, we defined that h as the height of the
clipped image, and s = αh, where α was gradually increased
from 0.1 to 0.9 by a step of 0.1; we experimented at three
target locations (i.e., Q1, Q2, and Q3) to identify efficient
size and location. Experimental results are shown in Fig. 11,
with numerical values on each bar indicating α in which the
highest recognition accuracy was obtained. From our results,
the maximum recognition rate of 44.8% was obtained when
α = 0.9, target location was Q2, and HOG features were
used.
Based on the above experimental results, we conclude that
geometric features attained the best performance.

B. Recognition experiments with combined features

To evaluate the performance and effectiveness of feature
combinations, we investigated the four combinations {G, B},
{G, T}, {B, T}, and {G, B, T}, where G indicates geometric
features, B indicates BoVW models, and T indicates texture
features. As for each feature, the optimal conditions that ob-
tained the highest recognition performance in our previous
experiments were used. Results are shown in Table 2. Here,
since our objective is a fish identification system, we note
that it is better to consider not only the first candidate, but
also several candidates. Thus, Fig. 12 shows performance
curves that indicate how often the correct classes for a query
were placed among the top k matches, with k varying from
one to 10.
From our results, we conclude that the best result was ob-
tained when combination {G, B} was used. Under this con-
dition, recognition accuracies of 66.6%, 86.2%, 92.0%, and
96.3% were obtained by considering one, three, five, and ten
candidates, respectively. Moreover, even as k varied, this
condition obtained the highest recognition accuracy under all
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Figure. 10: Recognition results (BoVW models).

Figure. 11: Recognition results (texture features).

conditions. The two combinations {G, T} and {G, B, T} ob-
tained the same performance curves. As for the remaining
combination, {B, T}, which does not contain a geometric
feature, the performance curve was lower than the perfor-
mance curves using the independent feature conditions of G
and B.

C. Discussion

Recognition results considering only the first candidate were
analyzed in combination {G, B}, which obtained the best
performance in the previous experiment. Figure 13 shows
the distributions of recognition rates of all 129 species. From

Figure. 12: Recognition results.

Figure. 13: Distributions of recognition rate.

Table 3: Order-level recognition accuracy.

Order # of species # of samples recognition rate [%]
Scorpaeniformes 17 340 64.1

Pieuronectiformes 4 80 55.0
Beryciformes 3 60 65.0
Perciformes 84 1,680 87.3

Beloniformes 4 80 82.5
Atheriniformes 1 20 30.0
Clupeiformes 3 60 45.0
Aulopiformes 2 40 57.5

Tetraodontiformes 9 180 85.6
Mugiliformes 1 20 70.0

Zeiformes 1 20 50.0

the figure, there were 55 species in which recognition accu-
racy exceeded 80%.
In our dataset, although the number of species was 129, the
number of orders was 11. We assume that order-level recog-
nition accuracy is higher than species-level recognition ac-
curacy. To study this, we computed order-level recognition
accuracy. Table 3 shows order-level recognition accuracy.
Here, Perciformes occupied the most species, and its recog-
nition accuracy was 87.3%. Scorpaeniformes had a large
number of species, but its recognition accuracy was low-
er than that of Tetraodontiformes. These results indicate
that the differences in Scorpaeniformes fish are larger than
those in Tetraodontiformes. Typical examples are shown in
Fig. 14. In particular, Fig. 14(a) shows Striped beakfish sam-
ples. Variations in the sample are small, and its recognition
rate was 100%. Conversely, Fig. 14(b) shows Adjutant sam-
ples. Variations in the sample are large, and its recognition
rate was 10%.
Next, we analyzed the RF-generated trees of RF in which the
features is a were combination of {G, B}. Table 4 shows the
ratios of the most selected features for the root node at each
tree. From our results here, we found that all seven geometric
features were selected in the first seven features, indicating
that geometric features are more important than the BoVW
model. Further, we found that the head side angle θ1 was the
most selected feature.
Considering all of our experimental results, for image-based
fish recognition, shape information is certainly useful.
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Table 2: Performance comparison with feature combinations.
candidates G B T {G,B} {G,T} {B,T} {G,B,T}

# of dimension 7 300 1764 307 1771 2064 2071
1 48.5 53.2 44.8 66.6 58.5 48.6 60.4
2 66.2 66.4 56.0 81.0 71.1 61.3 73.1
3 75.5 73.4 62.2 86.2 77.6 68.1 79.1
4 80.6 78.6 66.2 90.0 81.9 72.8 83.7
5 84.1 81.3 69.9 92.0 84.6 84.6 85.7

10 93.1 89.0 79.2 96.3 90.9 84.1 92.5

(a) Striped beakfish.

(b) Adjutant.

Figure. 14: Variability in samples.

VIII. Conclusion

In this paper, we proposed a fish recognition method based
on various feature points. Most traditional research requires
a white or uniform background, which is limiting. In our
approach, we relax this constraint and adopt a variety of fea-
ture points; as such, our proposed method is able to accept
fish images in natural scenes. Moreover, we investigated ef-
ficient features for fish recognition, evaluating our proposed
method with a large-scale dataset. We found that geomet-
ric features are most important versus other features that we
studied.
We also note here that even if fish are from the same species,
they differ in terms of appearance and shape based on the
development stage (i.e., young, adult, and senility), gender,
and photography time; however, in our study, we also con-
sidered species-level recognition. To improve performance,
our future work includes the consideration of detail level. Fi-

Table 4: Selected features for random forest.
order features ratio

1 θ1 0.1375
2 θ3 0.1075
3 θ4 0.1050
4 AR 0.1000
5 Ranal 0.0825
6 Rdorsal 0.0825
7 θ2 0.0750

8–307 BoVW —

nally, all feature points in this study were manually identified
and input by several students, and thus, we did not consider
feature point error, which we need to discuss in future work.
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