
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 5 (2012) pp. 106-114
© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Fault Tree Analysis Speed-up with GPU Parallel
Computing

Hadi Aghassi1 and Farrokh Aghassi2

1 Electrical and Computer Engineering Depart, Shahid Rajaee University,

Tehran, Iran
hadi.aghassi@gmail.com

2 School of Engineering, Razi University,

Kermanshah, Iran
farrokhaghassi@gmail.com

Abstract: The reliability analysis of critical systems can be
performed using fault tree analysis. One of the common
approaches used for fault tree analysis is Monte Carlo
simulation. The purpose of this paper is therefore to show an
algorithm to speed up Monte Carlo simulation for analyzing
fault tree with parallel computing in GPU. To this end, we use
time-to-failure tree to model fault tree with Compute Unified
Device Architecture (CUDA) which is used to accelerate the
execution of loops with many repetitions. We also use this
technique to accelerate Monte Carlo simulations. In addition,
we visualize fault tree so that the user is able to generate fault
tree in detail using our developed software and can execute it.
The computational outcomes validate the effectiveness of the
suggested approach, as we approached about 310 times speed-
up in large fault trees.

Keywords: Fault tree analysis; Monte Carlo simulation;
sensitivity analysis; parallel programming; GPU computation;
CUDA; time-to-failure

I. Introduction

Fault Trees (FT) [1] have proven to be the most popular
choice in terms of building an analytical model of a system.
They provide a compact representation of the system that is
easily understood by human. Several researchers have
proposed different methods to solve fault trees [3]. FTs are
analyzed by analytic approaches or Monte Carlo Simulations
(MCS) [2].

The analytic approach is fast and computationally cheap.
Nevertheless, its usage is limited to a few models and certain
kinds of parameter distributions. Moreover, in case the
parameters are correlated, this approach proves useless. The
combination of warm or cold spares and Weibull (or other
non-exponential) time-to-failure (TTF) distributions
complicates analytic approaches. By increasing dynamic
gates in FT, this complication becomes more obvious and
this complexity will lead to have more mistakes in FT
analysis. Because of this problem, most FT systems are vital
and consequently any mistake can go unnoticed and
irreparable.

Unlike the analytic approaches, the simulation approach
can be broadly used and the failure can be controlled by the
number of iterations. However, the simulation approach is
limited by its intensive computation. Because of the rare
events (such as failures and errors), an extremely large size of
sample may be needed for the purpose of obtaining estimates

at a high level of confidence. Therefore, MCS is time-
consuming [3, 4, 15].

There are two kinds of fault trees including static and
dynamic FTs. In analytic approaches, static fault trees can be
solved in two ways: (1) using Binary Decision diagram
(BDD) [6], (2) using cut sets [5, 6]. The cut set approaches
are generally inferior to the newer BDD based approaches. In
addition, dynamic FT gates can be solved by conversion to
equivalent Markov chain model [6]. To solve FT in analytic
approaches most often static and dynamic parts of tree are
firstly separated and they are solved afterwards [7]. However,
the conversion to equivalent Markov chain in dynamic sub
tree is confusing and in a large sub tree, it is very difficult
and the risk of mistakes occurring is very high.

In [3, 4, 15], a tree model is presented which can be used
for accelerating MCS using field programmable gate arrays
(FPGAs). This model can be easily obtained from a FT and
has a direct hardware implementation. Because it computes
failure time of FT root while a fault occurs in a basic event, it
is called time-to-failure (TTF) tree. In fact, a time-to-failure
tree receives the TTFs of the components, and computes the
TTF of the whole system. In other words, this model is a
method for representing the mathematical relation between
the system TTF and the components' TTFs. Both dynamic
and static FTs can be converted into time-to-failure trees.
This model uses FPGAs and works with hardware, therefore
it has less flexibility. For example, while FT is changed, the
user has to change the TTF and hardware additionally.

Concisely, following methods are used for analyzing FT.
We can use BDD to analyze static nodes but it is not useful
for dynamic gates and therefore we had to use Markov chain
for dynamics. Markov chain is useful for phase-dependent or
time-dependent analyses but it is very complex in large FTs.
In addition, in most applications, a total probability is all that
is desired [8]. Therefore, MCS is a good choice to analyze
FT, which has been widely applied in hardware simulation of
MCS for FT analysis [3, 4, 15]. In hardware simulation of FT
analysis, flexibility is ignored, for it is not practically helpful.
Thus, software flexibility makes a case for speedy software
for the analysis of FTs.

One of the most eminent aspects of FT is its coverage
factor, which is the probability that the system can
automatically recover from a fault and its associated errors,
and therefore it is able to continue its standard operation,
even in a degraded mode. We illustrate this subject with more
detail in the next section.

ISSN 2150-7988 Volume 5 (2013) pp. 106-114

Aghassi and Aghassi

107

Moreover, another aspect of FT analysis is sensitivity
analysis. Sensitivity analysis is one of the most important
stages in FT analysis because it specifies weakness of a FT.
A perfect sensitivity analysis is also time-consuming because
all of the events must be evaluated individually or in sets.

In this paper, we use TTF model for a software modeling
and show an algorithm to speed up MCS for analyzing fault
tree and sensitivity with parallel computing in GPU. For this
purpose, we apply time-to-failure tree to model fault tree
with CUDA programming language belonged to NVIDIA
corporation that is used to accelerate execution of loops with
numerous iterations. In addition, we designed a visual
software to paint fault tree in such a way that the user can
generate the CUDA code and execute it. In this paper, we
approached about a 310 times speed-up in FTA and about
100 times in sensitivity analysis.

The rest of this paper is organized as follows: In section
II, we investigate the background related works. In
section III, our proposed speed-up algorithm in MCS for fault
tree analysis and sensitivity analysis is explained in detail,
and its implementation and visualization descriptions are
discussed in section IV. We evaluated the proposed
algorithm in section V comparing it to series algorithms. In
the last section, the conclusion and future works are
explained.

II. RELATED WORKS
Several researchers have proposed different methods to solve
fault trees [3, 5, 6]. Dugan et al. [7, 9, 10], have shown that it
is possible for the modularization process to identify the
independent sub-trees with static or dynamic gates: to use
BDD for static sub trees and to use a different Markov model
for each dynamic sub tree. Furthermore, A. Ejlali [4] showed
a new manner to calculate failure time of FT root with the
help of hardware.

A. Time-To-Failure(TTF)

According to [15] we can easily attribute a TTF component
to every FT gate. The fault tree model for a series system is
simply an OR gate. In a series system, each element of the
system is required to operate correctly for the entire system
to operate correctly. Therefore, the TTF of a series system is
equal to the minimum of the components' TTFs. “Fig. 1(a)”
shows how a MIN unit corresponds to the OR gate in FTs.
The fault tree model for a parallel system is simply an AND
gate.

In a parallel system, only one of the several elements
must be operational for the system to perform its function
correctly. Therefore, the TTF of a parallel system is equal to
the maximum of the components' TTFs. “Fig. 1(b)” shows
how a MAX unit corresponds to the AND gate in FTs.

(a)

(b)

(c)

Figure 1. The gates in FT and their corespanding in time-to-failure tree:
(a) series system (b) parallel system (c) cold spare.

Figure 2. A 2-of-3 gate is converted to its corresponding time-to-failure

unit

Figure 3. Two cold spares and its FT and TTF

The SEQ gate is one of the dynamic gates, which can be
used for modeling cold spares. It forces the input events to
occur in the left-to-right order, i.e. an input event to a SEQ
gate is not enabled until all of its left inputs have already
occurred. “Fig. 1(c)” shows how an ADD unit corresponds to
the SEQ gate in FTs.

 “Fig. 2” illustrates how an M-of-N gate can be converted
to a corresponding time-to-failure tree.

As an example, “Fig. 3” demonstrates how an FT with
two cold spare gates can be transformed into another
identical FT with a SEQ gate, which in turn can be easily
converted to a time-to-failure tree [4].

B. Sensitivity Analysis and Coverage Factor

One of the most important outputs of a FT analysis is
sensitivity analysis, also known as importance analysis,
which is calculated for the top event. Sensitivity analysis
establishes the significance for all events in the fault tree in
terms of their contributions to the top event probability. Both
intermediate events (gate events) as well as basic events can
be prioritized according to their importance. Sensitivity can
be calculated as the ratio of sensitivity of the top event

 Fault Tree Analysis Speed-up with GPU Parallel Computing 108

probability to an increase or decrease in the probability of
any event in the fault tree. Both absolute and relative
sensitivity analyses can be calculated too. In this paper, we
discuss the relative sensitivity analysis.

As mentioned earlier, a fault tolerant computer system
may fail to recover from a fault, even if spare units remain.
For example, a fault may produce an undetected error and
then the subsequent calculations or operations may operate
on incorrect data possibly leading to overall system failure.
Even when an error is detected, the system may still be
unable to recover, because the fault could confuse the
automatic recovery procedures into disabling the wrong
component. A coverage model is used to help the structure of
our discussion of covered and uncovered faults.

A random-selector unit can be used for modeling the
coverage factor in TTF. For example, “Fig. 4” shows how a
cold spare with the coverage factor CF=0.7 can be modeled
using a random-selector unit. In this figure, TP is the TTF of
the primary unit and TS is the TTF of the secondary (spare)
unit. Here TSYS is equal to TP with the probability of 0.3 and
is equal to TP+TS with the probability of 0.7 [4]. A random-
selector unit can be easily implemented as a function or a
state in software programming.

Figure 4. A TTF tree modeling cold spare with coverage factor = 0.7

C. CUDA

In CUDA, the computing system device consists of a host,
which is a traditional central processing unit (CPU), such as
an Intel architecture microprocessor in personal computers,
and one or more devices, which are massively parallel
processors equipped with a large number of arithmetic
execution units.

In modern software applications, program sections often
exhibit a rich amount of data parallelism, a property allowing
many arithmetic operations to be safely performed on
program data structures simultaneously. The CUDA devices
accelerate the execution of these applications by harvesting a
large amount of data parallelism [11].

A CUDA program consists of one or more phases that are
executed on either the host (CPU) or a device such as a GPU.
The phases that exhibit little or no data parallelism are
implemented in host code [12]. However, those exhibiting a
rich amount of data parallelism must be implemented in the
device code.

 A CUDA program is a unified source code
encompassing both the host and the device code. The
NVIDIA C compiler (NVCC) separates the two during the
compilation process. The host code is a straight ANSI C
code; it is further compiled with the host’s standard C
compilers and runs as an ordinary CPU process. The device
code is written using ANSI C extended with keywords for
labeling data-parallel functions, called kernels, and their
associated data structures. The device code is typically

further compiled by the NVCC and executed on a GPU
device [11, 13].

“Fig. 5” illustrates the difference between CPU and GPU.
GPU is specialized for compute-intensive, highly parallel
computation and is therefore designed such that more
transistors are devoted to data processing rather than to data
caching and flow control.

Figure 5. Structure of CPU vs. GPU

When we program through CUDA, the GPU is viewed as
a computing device capable of executing a numerous number
of threads in parallel. It operates as a coprocessor to the main
CPU. In other words, data-parallel, compute-intensive
portions of applications running on the host are off-loaded
onto the device.

More precisely, a portion of an application that is
executed many times independently with the same algorithm
and on different data, can be isolated into a function that is
executed on the device as many different threads. To that
effect, such a function is compiled to the instruction set of the
device and the resulting program, called a kernel, is
downloaded to the device to be executed [11, 13].

Both the host and the device maintain their own DRAM,
referred to as host memory and device memory respectively.
One can copy data from one DRAM to the other through
optimized API calls that utilize the device’s high-
performance Direct Memory Access (DMA) engines.

The amount of performance benefit an application will
realize by running on CUDA depends entirely on the extent
to which it can be parallelized. The code that cannot be
sufficiently parallelized should run on the host, unless doing
so would result in excessive data transfers between host and
device [13].

Amdahl’s law [14] specifies the maximum speed-up that
can be expected by parallelizing portions of a serial program.
Essentially, it states that the maximum speed-up (S) of a
program is:

 ܵ ൌ 	
ଵ

ሺଵି௉ሻା
ು
ಿ
	
 

Where P is the fraction of the total serial execution time
taken by the portion of code that can be parallelized and N is
the number of processors over which the parallel portion of
the code runs.

The larger N is (that is, the greater the number of
processors), the smaller the P/N fraction. It can be simpler to
view N as a very large number, which essentially transforms
the equation into ܵ ൌ 1 ሺ1 െ ܲሻ⁄ . Now, if ¾ of a program is
parallelized, therefore the maximum speed-up over serial
code is 1 / (1 – ¾) = 4.

For most purposes, the key point is that the greater P is,
the greater the speed-up [4]. An additional caveat is implicit
in this equation, which is that if P is a small number (so not
substantially parallel), increasing N does little to improve
performance. To get the largest lift, the best practices suggest
spending most effort on increasing P; that is, by maximizing
the amount of the code that can be parallelized.

Aghassi and Aghassi

109

When using CPU timers, it is critical to remember that
many CUDA API functions are asynchronous, that is, they
return control back to the calling CPU thread prior to
completing their work. All kernel launches are asynchronous,
and so are all memory copy functions with the Async suffix
on the name. Therefore, to accurately measure the elapsed
time for a particular call or a sequence of CUDA calls, it is
necessary to synchronize the CPU thread with the GPU by
calling cudaThreadSynchronize() immediately before starting
and stopping the CPU timer. cudaThreadSynchronize()
blocks the calling CPU thread until all CUDA calls
previously issued by the thread are completed [11]. These
methods are available in the CUDA library.

III. PROPOSED ALGORITHM
As mentioned earlier, for analyzing FT we have two ways:
analytic approaches or MCS [2]. Analytic approaches are
speedy and liable to mistake, and their calculations are
limited to some special kinds of FTs, but MCS is time
consuming, unmistakable, and is not limited in FT kinds [4].
Analytic approaches are inefficient for calculating large FTs
and mostly MSC is used for this purpose, though MCS is so
time consuming. Considering this fact, in this paper, we
propose a method with parallel computing in GPU to
decrease the execution time of the MCS that includes
numerous iterations.

However, in recent studies on FT, not only fault tree
analysis includes the computation of failure time of FT that is
described in the first phase, but also it takes account of
sensitivity analysis for better understanding of FT. This
analysis is also time-consuming and therefore we offer a
parallel solution for this problem in the second phase.

A. Speed-up algorithm to Monte Carlo simulation in FT
analysis

In MCS, we have to generate random numbers for FT entries
and iterate this task for many times. The generated random
numbers must be exponential or Weibull distributions [4]. In
this paper, we choose exponential distribution to analyze FT.
For this purpose, if variable R has a uniform distribution over
[0,1), the random variable X is an exponential distribution of
[4]:

 ܺ ൌ 	െ
୪୬ሺଵିோሻ

ఒ	
 

Where variable λ is the failure rate of each component
and its scale is mostly hour. Generated number X is the time
to failure of the same component with λ [4].

Each leaf of FT has a λ. For all MCS iterations, we set a λ
to each FT leaf, and generate X for that leaf. Then, we pass X
to the top nodes of FT with MAX, MIN, ADD, or other
gates. We keep running this operation until we arrive at the
root of FT. Consequently, each iteration computes an X that
contains failure rate of FT. Ultimately, Xs average of FT root
is calculated, which is known as the FT average failure rate.

In the algorithm of “Fig. 6”, first, we assign the root of
FT to the function argument E and then calculate X for each
leaf of fault tree. Note that calculate times of X in this
algorithm are equal to the number of MCS iterations for each
leaf. Then this array is propagated to the top of FT. As an
alternative, we could also execute the entire algorithm in
MCS iteration count as in each iteration, we could allocate
one X to each leaf, and propagate it to the top of FT. The
second option seems to be useless in this project because it
needs more iterations with heavier codes to be executed in
each iteration.

In the first iteration of the for loop, we firstly define a two
dimensional array to save X of leafs. The first dimension is
leaf ID and the second is iteration number. Then, for each
iteration, we assign an X to this array.

Figure 6. FT algorithm

In the next step, recursive FTAnalysis() function is called,
which firstly checks the node to see whether it is a leaf or

Node E = Root of FT
Array Prob[][] =
 new[leaf counts][iteration of MCS]

For(i = 0 to tree leaf count)
{
 For(j = 0 to iteration of MCS)
 {
 Calculate X to every leaf;
 Prob[i][j]=X;
 }
}
double FTAnalysis (Node E)
{
 If E is Leaf then

Return Prob[E];

Else if E is an AND node then
{
 FTAnalysis(E child);
 Calculate max Prob of children
 with CUDA;
 Insert max Prob in E node;
 Return max Prob;
}
Else if E is an OR node then
{
 FTAnalysis(E child);
 Calculate min Prob of children
 with CUDA;
 Insert min Prob in E node;
 Return min Prob;
}
Else if E is a sequence node then
{
 FTAnalysis(E child);
 Calculate sum Prob of children
 with CUDA;
 Insert sum Prob in E node;
 Return sum Prob;
}
Else if E is a cold, warm or hot node then
{
 Convert this node to equivalent
 TTF that will be a tree ;
 Calculate FTAnalysis(E);
}
Else if E is a FDEP node then
{
 Convert this node to equivalent
 TTF that will be a tree ;
 Calculate FTAnalysis(E);
}

Else // E is a intermediate node
 Return FTAnalysis (child of E);

}

not. In case of a leaf, Prob (probability) variable of the node
is returned. Otherwise, if the type of the node is an AND one,
then children of the node are checked, and if they are not leaf
then FTAnalysis() function for children is called to determine
Prob of the nodes. After the determination of children’s
Probs, another function is called to calculate the maximum of
children’s Probs in GPU. This function is a CUDA program
that obtains and returns children’s Probs. Now, node Prob is
equal to the max of children’s Probs. Considering the fact
that iteration count is high and Prob variable dimensions
count is equal to iterations count, calculating this amount of
information is time-consuming and is considered to be
processed in GPU. Subsequently, we attribute the returned
value from GPU to node E and then return it to be used in
other nodes.

If node E is an OR or SEQ gate, the procedure will
resemble an AND gate. However, in CUDA function of the
OR gate, we must calculate the minimum of children, and in
SEQ gate, we must calculate the sum of children’s Probs.

If E node is a cold, warm, or hot spare or a FDEP gate,
then we convert these gates into equivalent time to failure
tree to calculate FT. Afterward, converted tree is analyzed by
FTAnalisis() function. In dynamic states, we could also
define a program easily to calculate the failure probability of
these nodes, because of the advantage of software
programming flexibility. Nevertheless, we use converting
gates to TTF to collaborate with TTF idea and to compare
this algorithm to TTF model. To this end, first we have to
change existing dynamic fault tree nodes to equivalent TTF
model and add some codes to FT algorithm expressed in
“Fig. 6”. For instance, the TTF model for cold spare is “Fig.
4” and its algorithm can be like “Fig. 7”.

Figure 7. random-selector algorithm

In this algorithm, we used CUDA functions to accelerate
the execution of the program. To define these functions,
some prerequisite tasks are necessary to be accomplished at
first. One of these tasks is to determine dimensions of CUDA
function. These dimensions are used to define the number of
grids, blocks, and threads in a CUDA program. For example,
“Fig. 8” defines 10*10 threads in a 4*4 blocks in a GPU.

Figure 8. Defining threads and blocks

The blocks variable defines the number of blocks that has
a two-dimensional index and for each block, we have two
dimensional indices of threads, so in this example we have
10*10*4*4=1600 threads [11, 13]. All of these dimensions
are three-dimensional variables and if any of them were not
defined, they would be assumed as one-dimensional.
Therefore, in this example, block dimensions are (4, 4, 1) and
thread dimensions are (10, 10, 1).

For calling CUDA code, we must do like “Fig. 9”:

Figure 9. Calling a CUDA function

This code executes a desired function for each thread of a
block. In other words, the code will be executed for
blocks*thread times. Since GPU has numerous cores, each
thread is executed in one core, consequently the speed of the
execution rises. Therefore, for more speed-ups, more cores
are a good choice.

B. Speed-up algorithm to sensitivity analysis

For a FT analysis, determining failure time of fault tree root
is not adequate, because this just identifies the uncertainty
analysis of fault tree, and does not make any suggestions
about the answer to the following questions: “where is the
problem or the most faulty part in FT?” or “how do results
change by changing input parameters?” or “what is the most
cost-effective way to improve reliability?”. Sensitivity
analysis provides some information about the important
nodes that have the most effect on the root of FT.

Sensitivity analysis is one of the major outputs of an
FTA, which is calculated for the top event. This top
sensitivity analysis establishes the significance for all of the
events in the fault tree in terms of their contributions to the
top event probability [8].

One useful point about sensitivity analysis is that they
generally show relatively few events contributed to the top
event probability. In many of the past FTAs, less than 20% of
the basic events were important contributors in the fault tree
contributing more than 90% of the top event probability.
Moreover, the importance of the events in the fault tree
generally clusters into groups that differ by orders of
magnitude from one another. In these cases, the importance is
so dramatically diverse that they are not generally dependent
on the preciseness of the data used in the FTA [8].

As mentioned above, there are two kinds of sensitivity
analyses: absolute and relative sensitivity analysis. Absolute
sensitivity analysis is calculated with partial derivative of
basic events that are not very time-consuming. On the other
hand, relative sensitivity analysis is calculated by changing
basic events and analyzing top event changes. In this paper,
we discuss relative sensitivity analysis, and call it sensitivity
analysis.

In a sensitivity analysis, an input data parameter, such as a
component failure rate, is changed, and the resulting change
in the top event probability is determined. This is repeated for
a set of changes either using different values for the same
parameter or changing different parameters, for example,
changing different failure rates. Usually for a given
sensitivity evaluation, only one parameter is changed at a
time. This is called a one-at-a-time sensitivity study.
Sometimes two or more parameter values are simultaneously
changed to study the interactions among the parameters.

The decisions that are made to carry out sensitivity
analysis include which data parameters to be changed and
what values to be used for the parameters. A small change in
a data parameter shows the linear effect of the change on the
top event probability. Assigning 1 or 0 or a value to the
failure probability of a basic event provides the maximum
effect of changes in the parameter. It can be shown that using
a small change or using 1 or 0 for the event probability gives
the same information as the sensitivity analysis [8].
Therefore, intermediate changes in the parameters are
selected for the sensitivity studies.

Ret-type func-name<<<blocks, threads>>>(arguments);

Dim3 blocks = (4, 4);
Dim3 threads = (10, 10);

int j=a random integer between 0 and spare child count-1
For(int i 0 to spare child count)
 If i=j
 return FTAnalysis(child i);

Fault Tree Analysis Speed-up with GPU Parallel Computing 110

Aghassi and Aghassi

111

As indicated in algorithm “Fig. 6”, we defined a Prob
variable to save failure time of FT, and in this case, we can
use this variable and the same algorithm to calculate FT
failure time. Instead of MCS iterations, we implement some
other iterations in which one of the probabilities of leaves
changes. In other words, first loop of the algorithm presented
in “Fig. 6” resembles the algorithm in “Fig. 10”.

Figure 10. Section of sensitivity analysis algorithm

In this algorithm, first we define a two-dimensional array
whose first dimension is “the number of leaves + 1” and the
second is “the number of leaves”. This two-dimension matrix
saves some random numbers calculated by the X formula in
all lines. These numbers are default numbers and then in each
line of matrix, one of them is changed. The second loop
calculates the rest of the matrix by summing previous
random number and 0.001 to see changes in the fault tree
root. The rest of the algorithm is the same as the algorithm in
“Fig. 6” and ultimately, all of the root sensitivities for basic
event changes are inserted in Prob variable of root node to be
checked and analyzed.

In this algorithm, we could add some policies to indicate
sensitivity answers in the end of the algorithm. To this end,
we could sort fault tree analysis answers and show the
greatest answer, that is the node related to this answer has the
greatest importance in FT. Furthermore, safety of this node
should be considered.

We utilized only one node change in the algorithm,
however, sometimes it is necessary to change two or more
nodes concurrently to see FT sensitivity. For this purpose, we
could obtain the leaves that should have been changed by the
user, and we could change them, and execute FTAnalysis()
function to see the answers. In addition, we could change all
of the nodes in pairs or in sets respectively, and send them to
the function to get answer.

If the fault tree used is a big one, the presented sensitivity
algorithm will be very functional, because sensitivity analysis
is a manual analysis and in a massive analysis, it is likely to
make a mistake. Therefore, this algorithm is very useful in
large fault trees.

Sensitivity analysis is almost a troublesome one and the
majority of activities to calculate sensitivity analysis are
manual methods. Besides, in large FTs, determining nodes to
be changed is very complicated task. On the other hand, there
is not a distinctive technique to analyze the sensitivity of a
fault tree; hence, the presented sensitivity analysis algorithm
in “Fig. 10” is not a consistent algorithm. In other words,
since sensitivity analysis is very changeable, it is likely to
change this algorithm to another form according to the
objective.

On the whole, for analyzing fault tree, we speed up MCS
and sensitivity analysis, and since these two are adequate to
analyze a fault tree in action, thus we only offer solutions that
are almost enough for analyzing every fault tree. In
particular, the proposed method is very helpful in analyzing
large FTs. In addition, it reduces mistakes that are very

frequent in other methods. For this reason, the proposed
method has obvious advantages over other earlier works on
analyzing large FTs.

IV. IMPLEMENTATION
For better visualization, we designed a user interface, which
is illustrated in “Fig. 11” and is developed with Java
programming language by NetBeans IDE (7.0). This
application contains some modules of FT design for user’s
convenience. In this UI, the user is able to design his own FT
by gates, events, or other equipments that are included in a
board on the application design tools.

In addition, there is a fault tree designing area that has a
dynamic scroll bar. To illustrate this aspect of application,
suppose the FT designed by user is so large that cannot be
placed in the design area. In this case, user can zoom out the
design area, move to an unoccupied area, and then zoom in to
keep drawing the rest of tree. To take this fact into
consideration, we must say that the reason is in consistent
with scroll bar, which means that in zooming in or out, scroll
bar has a constant length.

This UI gets the FT designed model from the user and
then saves it in an XML file. When we save the FT in an
XML file, the UI checks the FT, and if there is any mistake
or nonstandard gates, then the application can correct and
save it. In a regular FT analysis, we should save dynamic
gates too, however, sometimes it is necessary to change
dynamic gates to static ones and save them. In this case, UI
checks the FT, and if there is a cold, warm, or hot spare and
FDEP, then UI changes it to the static gates (OR, AND or
SEQ) [3, 4, 15]. In this manner, the generated TTF will be
very simple to use, and executed time will be less because
dynamic nodes are very complicated and time-consuming in
execution.

This application also supports encapsulation concepts
because when user clicks in the analyzer of FT button to see
the FT analysis answer after execution, he/she will see the FT
failure rate. In this case, the user will not be involved in the
CUDA code and it will be executed automatically.

Then, by means of the remote procedure call method, the
UI calls the program written in C programming language
including the CUDA code. Calling this code causes to read
the FT saved in XML file and to execute the code. At last,
remote called method will return the FT failure rate and the
UI will get and show it.

This UI also has a button to arrange the FT designed by
user. This button will arrange the entire designed tree to a
symmetrical tree that is convenient to understand.
Additionally, the user can calculate the FT probability with
probabilities attached to each leaf (the probability for each
node also should be identified by the user). In addition to
analyzing fault tree with Monte Carlo simulation, the user
has a choice to calculate his fault tree manually.

Moreover, the user can save FTs in an XML file and later
he or she can load and change it. We use XML files to save
because of their power. In fact, XML files are standard,
machine friendly, and all of the operating systems support
them, and they can be used on the internet and all
programming languages.

In the programming section, it is necessary to note that
CUDA programming language just supports variables of data
types defined by C language and other data types, such as
objects defined by the user, must be in host memory, and
their used variables should pass to device memory. If array
data type is defined by a user-defined object, it cannot be
passed to devise memory.

Array Prob[][] = new[leaf counts+1][leaf counts];
For(j = 0 to leaf count)
{
 Calculate X for every leaf;
 For(int i = 0 to leaf counts +1)
 Prob[i][j]=X;
}
For(i = 1 to tree leaf count+1)
 Prob[i][i-1]= Prob[0][i-1] + 0.001;

 Fault Tree Analysis Speed-up with GPU Parallel Computing 112

To execute CUDA code, we used a NVIDIA GeForce
8600 GS graphic card that has 16 CUDA processors of 600
MHz, core clock rate. The CPU used for this examination
was Intel core 2 Duo with 1.83 GHs clock rate. Moreover,
the RAM was 2 GB with 987 MHs clock rate. This
implementation of the code was done using a DELL laptop
with a XP/32 bit windows.

We implemented this algorithm for CPU and GPU in the
same manner to compare the results obtained from each of
them. The CPU implementation was in C programming
language and GPU implementation was in both C and CUDA
programming languages, C for host code and CUDA for
devise code. We compared two FTs, first with 5 static nodes
and then with 20 static nodes. For each FT, we calculated the
execution time with the iterations 1, 10, 100, 1000, 10000,
100000 and 1000000. The execution times for GPU are
shown with blue color and execution times for CPU are
showed with red color.

Figure 11. FT design user interface

V. EVALUATION
 As mentioned earlier, we implemented our speed-up
algorithm with two approaches: CPU FT computation and
both CPU- GPU FT computation.

 “Fig. 12” is a FT with five nodes and it shows that the
GPU calculation of FT begins from about 100 ms when
iterations count is 10, and finally in the 1000000 iterations, it
reaches about 1s. However, the CPU calculation of FT when
iterations count is 10 begins in 1 ms and then grows up
exponentially where in 1000000 iterations it reaches 10000
second. This figure shows that the increasing of the GPU
computation is almost linier but the CPU computation is
exponential. Therefore, in large iterations the CUDA works
better than C programming language. Also, this figure shows
that after 100000 iterations, CUDA programming language
will work better than C programming language and will
fasten the FT computation.

“Fig. 13” is FT with 20 nodes and like “Fig. 12” it shows
that GPU calculation of FT begins from about 100 ms when
the iterations count is 10 and grows up almost like a linier
function, but the CPU calculation of FT, when the number of
iterations is 10, begins in 1 ms and then grows up
exponentially where in 1000000 iterations it reaches 10000
seconds. Also, this figure shows that after 30000 iterations,
the CUDA programming language will work better than C
programming language.

These two diagrams show that with the development of
FT, its CPU computation will increase, but in GPU
computation, this increase is not too much, therefore in
addition to working better in the large iterations, this
algorithm works better in large FTs. In case FT is large and is
for a critical system, we have to increase the iteration count
so many times to reach a precise FT computation answer. For
such a system, this algorithm works very well and it will
decrease the time that is necessary for computing FT failure
rate.

Figure 12. FT calculation with 5 nodes

TABLE I. EXPERIMENTAL RESULTS

FT Speed-up

For Fault Tree existing of 5

nodes

10

For Fault Tree existing of 20

nodes

24

The experiments show that the implementation of the

algorithm can significantly reduce the required time for
MCS, especially when the fault tree is large. In the normal
FTs (not very large or very little), we have a speed-up about
310 times as long as that of CPU when FT nodes were 100
for a Fault Tree with 100000 iterations, we had 310 times
speed-up.

Aghassi and Aghassi

113

Figure 13. FT calculation with 20 nodes

Figure 14. Sensitivity analysis of FT in CPU and GPU

“Fig. 14” is a diagram to compare sensitivity analysis
speed in CPU and GPU processors. In this diagram, we can
see that when node counts is 10, then sensitivity analyzing
time for both GPU and CPU is approximately 0.0001. When
node count is 100, then GPU is 10 times speedier than CPU.
Moreover, when node count is 1000, speed-up rises to 100
times. Therefore, in sensitivity analysis we approached a
speed-up of about 100 times in proportion to similar
algorithm in CPU.

VI. CONCLUSION
Fault tree analysis can perform the reliability analysis of
critical systems. One of the approaches for the fault tree
analysis is Monte Carlo simulation. In this paper, we
purposed a novel approach to speed up Monte Carlo
simulation for analyzing fault tree and to sensitivity analysis
with parallel computing in GPU. Using the time-to-failure
tree, we modeled fault tree with Compute Unified Device
Architecture (CUDA), which is used to accelerate the
execution of loops with many repetitions.

Moreover, we accelerated Monte Carlo simulations with
our new approach. In addition, we developed a user-friendly
software to visualize fault tree so that the users can generate
fault tree in detail.

The computational outcomes validate the effectiveness of
the suggested approach, as we approached about 310 times
speed-up. Our software can obtain much more than 310 times
speed-up by using stronger GPU. Our future work is the
implementation of a CUDA code generator for the people
who do not know CUDA so that they can write their codes in
other languages and this generator can exchange their codes
into CUDA.

REFERENCES
[1] E. J. Henley, and H.Kumamoto, “Probabilistic Risk

Assessment, Reliability Engineering, Design, and
Analysis”, IEEE Press, 1992.

[2] Metropolis N., and S. Ulam, “The Monte Carlo
Method”, Journal of American Statistical Association,
Vol. 44, No. 247, Sept. 1949, pp. 335-341.

[3] Farrokh Aghassi, Hadi Aghassi, and Zahra Sheykhlar,
“A speed-up algorithm in Monte Carlo simulation for
fault tree analysis with GPU computing”, International
Conference of Soft Computing and Pattern Recognition
(SoCPaR), 2011, pp. 469-474.

[4] A. Ejlali, S.G. Miremadi, “Time-to-failure tree,” Proc.
of Ann. Reliability & Maintainability Symp., 2003, pp.
148-152

[5] W. Lee, D. Grosh, F. Tillman, CH. Lie, “Fault tree
analysis methods and applications: a review,” IEEE
Trans Reliab; vol. 34, 1985, pp. 194-302

[6] W. Vesely, F. Goldberg, N. Roberts, D. Haasl, “Fault
tree handbook,” United States Nuclear Regulatory
Commission, January 1981.

[7] J.B. Dugan, R. Gulati, “A modular approach for
analyzing static and dynamic fault trees,” In: Proc Ann
Reliability & Maintainability Symp, Philadelphia,
Pennsylvania, USA, January 1997, pp. 57-63.

[8] M. Stamatelatos, W. Vesely, “Fault Tree Handbook
with Aerospace Applications”, Prepared for NASA
Office of Safety and Mission Assurance, 2002, page 89-
90-94.

[9] J.B. Dugan, S. Bavuso, M. Boyd, “Dynamic fault-tree
for fault-tolerant computer systems, ” IEEE Trans
Reliab, vol. 41, no. 3, 1992, pp. 363-76.

[10] H. Zhu, S. Zhou, J.B. Dugan, K.J. Sullivan, “A
benchmark for quantitative fault tree reliability
analysis,” Proc. Ann. Reliability & Maintainability
Symp., Jan 2001, pp. 86-93.

[11] NVIDIA Corporation, “CUDA programming guide”,
version 1.1, 2007.

[12] D. Kirk, H. Wen mei, “Programming massively parallel
processors,” ELSEVIER Inc, 2010.

[13] J. Sanders, E. Kandrot, “CUDA by example: an
introduction to general-purpose GPU programming”,
NVIDIA Corporation, version 1, 2011.

[14] NVIDIA Corporation, “NVIDIA CUDA C
Programming, Best Practices Guide”, 2009.

[15] A. Ejlali, S.G. Miremadi, “FPGA-based monte carlo
simulation for fault tree analysis,” Microelectronics
Reliability, vol. 44, 2004, pp. 1017-1028

 Fault Tree Analysis Speed-up with GPU Parallel Computing 114

Author Biographies
Hadi Aghassi teaches in the Computer Science
Department of Shahid Rajaee Teacher Training
University, SRTTU, since 2010. He is Master in
Computer Science, Iran University of Science and
Technology in 2009, and has a BS degree in Computer
Engineering, 2006. He teaches since 2007. His research
interests include machine learning, web/text mining,
project management, virtual robots, and parallel
algorithms.

Farrokh Aghassi received the BS degree in Computer
Engineering from Razi University in 2011. He worked in
an IT consulting firm and an Investment Bank as project
manager. His research interests include parallel
algorithms, GPU programming, multiple classifier
systems, and neural networks.

