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Abstract:  The reliability analysis of critical systems can be 
performed using fault tree analysis. One of the common 
approaches used for fault tree analysis is Monte Carlo 
simulation. The purpose of this paper is therefore to show an 
algorithm to speed up Monte Carlo simulation for analyzing 
fault tree with parallel computing in GPU. To this end, we use 
time-to-failure tree to model fault tree with Compute Unified 
Device Architecture (CUDA) which is used to accelerate the 
execution of loops with many repetitions. We also use this 
technique to accelerate Monte Carlo simulations. In addition, 
we visualize fault tree so that the user is able to generate fault 
tree in detail using our developed software and can execute it. 
The computational outcomes validate the effectiveness of the 
suggested approach, as we approached about 310 times speed-
up in large fault trees.  
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I.  Introduction 

Fault Trees (FT) [1] have proven to be the most popular 
choice in terms of building an analytical model of a system. 
They provide a compact representation of the system that is 
easily understood by human. Several researchers have 
proposed different methods to solve fault trees [3]. FTs are 
analyzed by analytic approaches or Monte Carlo Simulations 
(MCS) [2].  

The analytic approach is fast and computationally cheap. 
Nevertheless, its usage is limited to a few models and certain 
kinds of parameter distributions. Moreover, in case the 
parameters are correlated, this approach proves useless. The 
combination of warm or cold spares and Weibull (or other 
non-exponential) time-to-failure (TTF) distributions 
complicates analytic approaches. By increasing dynamic 
gates in FT, this complication becomes more obvious and 
this complexity will lead to have more mistakes in FT 
analysis. Because of this problem, most FT systems are vital 
and consequently any mistake can go unnoticed and 
irreparable. 

Unlike the analytic approaches, the simulation approach 
can be broadly used and the failure can be controlled by the 
number of iterations. However, the simulation approach is 
limited by its intensive computation. Because of the rare 
events (such as failures and errors), an extremely large size of 
sample may be needed for the purpose of obtaining estimates 

at a high level of confidence. Therefore, MCS is time-
consuming [3, 4, 15].  

There are two kinds of fault trees including static and 
dynamic FTs. In analytic approaches, static fault trees can be 
solved in two ways: (1) using Binary Decision diagram 
(BDD) [6], (2) using cut sets [5, 6]. The cut set approaches 
are generally inferior to the newer BDD based approaches. In 
addition, dynamic FT gates can be solved by conversion to 
equivalent Markov chain model [6]. To solve FT in analytic 
approaches most often static and dynamic parts of tree are 
firstly separated and they are solved afterwards [7]. However, 
the conversion to equivalent Markov chain in dynamic sub 
tree is confusing and in a large sub tree, it is very difficult 
and the risk of mistakes occurring is very high. 

In [3, 4, 15], a tree model is presented which can be used 
for accelerating MCS using field programmable gate arrays 
(FPGAs). This model can be easily obtained from a FT and 
has a direct hardware implementation. Because it computes 
failure time of FT root while a fault occurs in a basic event, it 
is called time-to-failure (TTF) tree. In fact, a time-to-failure 
tree receives the TTFs of the components, and computes the 
TTF of the whole system. In other words, this model is a 
method for representing the mathematical relation between 
the system TTF and the components' TTFs. Both dynamic 
and static FTs can be converted into time-to-failure trees. 
This model uses FPGAs and works with hardware, therefore 
it has less flexibility. For example, while FT is changed, the 
user has to change the TTF and hardware additionally. 

Concisely, following methods are used for analyzing FT. 
We can use BDD to analyze static nodes but it is not useful 
for dynamic gates and therefore we had to use Markov chain 
for dynamics. Markov chain is useful for phase-dependent or 
time-dependent analyses but it is very complex in large FTs. 
In addition, in most applications, a total probability is all that 
is desired [8]. Therefore, MCS is a good choice to analyze 
FT, which has been widely applied in hardware simulation of 
MCS for FT analysis [3, 4, 15]. In hardware simulation of FT 
analysis, flexibility is ignored, for it is not practically helpful. 
Thus, software flexibility makes a case for speedy software 
for the analysis of FTs.  

One of the most eminent aspects of FT is its coverage 
factor, which is the probability that the system can 
automatically recover from a fault and its associated errors, 
and therefore it is able to continue its standard operation, 
even in a degraded mode. We illustrate this subject with more 
detail in the next section. 
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Moreover, another aspect of FT analysis is sensitivity 
analysis. Sensitivity analysis is one of the most important 
stages in FT analysis because it specifies weakness of a FT. 
A perfect sensitivity analysis is also time-consuming because 
all of the events must be evaluated individually or in sets. 

In this paper, we use TTF model for a software modeling 
and show an algorithm to speed up MCS for analyzing fault 
tree and sensitivity with parallel computing in GPU. For this 
purpose, we apply time-to-failure tree to model fault tree 
with CUDA programming language belonged to NVIDIA 
corporation that is used to accelerate execution of loops with 
numerous iterations. In addition, we designed a visual 
software to paint fault tree in such a way that the user can 
generate the CUDA code and execute it. In this paper, we 
approached about a 310 times speed-up in FTA and about 
100 times in sensitivity analysis.  

The rest of this paper is organized as follows: In section 
II, we investigate the background related works. In 
section  III, our proposed speed-up algorithm in MCS for fault 
tree analysis and sensitivity analysis is explained in detail, 
and its implementation and visualization descriptions are 
discussed in section  IV. We evaluated the proposed 
algorithm in section  V comparing it to series algorithms. In 
the last section, the conclusion and future works are 
explained. 

II. RELATED WORKS 
Several researchers have proposed different methods to solve 
fault trees [3, 5, 6]. Dugan et al. [7, 9, 10], have shown that it 
is possible for the modularization process to identify the 
independent sub-trees with static or dynamic gates: to use 
BDD for static sub trees and to use a different Markov model 
for each dynamic sub tree. Furthermore, A. Ejlali [4] showed 
a new manner to calculate failure time of FT root with the 
help of hardware. 

A. Time-To-Failure(TTF) 

According to [15] we can easily attribute a TTF component 
to every FT gate. The fault tree model for a series system is 
simply an OR gate. In a series system, each element of the 
system is required to operate correctly for the entire system 
to operate correctly. Therefore, the TTF of a series system is 
equal to the minimum of the components' TTFs. “Fig. 1(a)” 
shows how a MIN unit corresponds to the OR gate in FTs. 
The fault tree model for a parallel system is simply an AND 
gate.  

In a parallel system, only one of the several elements 
must be operational for the system to perform its function 
correctly. Therefore, the TTF of a parallel system is equal to 
the maximum of the components' TTFs. “Fig. 1(b)” shows 
how a MAX unit corresponds to the AND gate in FTs.  

 

 
(a) 

 

 
(b) 

  

 
(c) 

Figure 1.  The gates in FT and their corespanding in time-to-failure tree: 
(a) series system (b) parallel system (c) cold spare. 

 
Figure 2.  A 2-of-3 gate is converted to its corresponding time-to-failure 

unit 

 
Figure 3.  Two cold spares and its FT and TTF 

The SEQ gate is one of the dynamic gates, which can be 
used for modeling cold spares. It forces the input events to 
occur in the left-to-right order, i.e. an input event to a SEQ 
gate is not enabled until all of its left inputs have already 
occurred. “Fig. 1(c)” shows how an ADD unit corresponds to 
the SEQ gate in FTs. 

 “Fig. 2” illustrates how an M-of-N gate can be converted 
to a corresponding time-to-failure tree. 

As an example, “Fig. 3” demonstrates how an FT with 
two cold spare gates can be transformed into another 
identical FT with a SEQ gate, which in turn can be easily 
converted to a time-to-failure tree [4].  

B. Sensitivity Analysis and Coverage Factor 

One of the most important outputs of a FT analysis is 
sensitivity analysis, also known as importance analysis, 
which is calculated for the top event. Sensitivity analysis 
establishes the significance for all events in the fault tree in 
terms of their contributions to the top event probability. Both 
intermediate events (gate events) as well as basic events can 
be prioritized according to their importance. Sensitivity can 
be calculated as the ratio of sensitivity of the top event 
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probability to an increase or decrease in the probability of 
any event in the fault tree. Both absolute and relative 
sensitivity analyses can be calculated too. In this paper, we 
discuss the relative sensitivity analysis.  

As mentioned earlier, a fault tolerant computer system 
may fail to recover from a fault, even if spare units remain. 
For example, a fault may produce an undetected error and 
then the subsequent calculations or operations may operate 
on incorrect data possibly leading to overall system failure. 
Even when an error is detected, the system may still be 
unable to recover, because the fault could confuse the 
automatic recovery procedures into disabling the wrong 
component. A coverage model is used to help the structure of 
our discussion of covered and uncovered faults. 

A random-selector unit can be used for modeling the 
coverage factor in TTF. For example, “Fig. 4” shows how a 
cold spare with the coverage factor CF=0.7 can be modeled 
using a random-selector unit. In this figure, TP is the TTF of 
the primary unit and TS is the TTF of the secondary (spare) 
unit. Here TSYS is equal to TP with the probability of 0.3 and 
is equal to TP+TS with the probability of 0.7 [4]. A random-
selector unit can be easily implemented as a function or a 
state in software programming.  

 

 
Figure 4.  A TTF tree modeling cold spare with coverage factor = 0.7 

C. CUDA 

In CUDA, the computing system device consists of a host, 
which is a traditional central processing unit (CPU), such as 
an Intel architecture microprocessor in personal computers, 
and one or more devices, which are massively parallel 
processors equipped with a large number of arithmetic 
execution units.  

In modern software applications, program sections often 
exhibit a rich amount of data parallelism, a property allowing 
many arithmetic operations to be safely performed on 
program data structures simultaneously. The CUDA devices 
accelerate the execution of these applications by harvesting a 
large amount of data parallelism [11]. 

A CUDA program consists of one or more phases that are 
executed on either the host (CPU) or a device such as a GPU. 
The phases that exhibit little or no data parallelism are 
implemented in host code [12]. However, those exhibiting a 
rich amount of data parallelism must be implemented in the 
device code. 

 A CUDA program is a unified source code 
encompassing both the host and the device code. The 
NVIDIA C compiler (NVCC) separates the two during the 
compilation process. The host code is a straight ANSI C 
code; it is further compiled with the host’s standard C 
compilers and runs as an ordinary CPU process. The device 
code is written using ANSI C extended with keywords for 
labeling data-parallel functions, called kernels, and their 
associated data structures. The device code is typically 

further compiled by the NVCC and executed on a GPU 
device [11, 13]. 

“Fig. 5” illustrates the difference between CPU and GPU. 
GPU is specialized for compute-intensive, highly parallel 
computation and is therefore designed such that more 
transistors are devoted to data processing rather than to data 
caching and flow control. 

 
Figure 5.  Structure of CPU vs. GPU 

When we program through CUDA, the GPU is viewed as 
a computing device capable of executing a numerous number 
of threads in parallel. It operates as a coprocessor to the main 
CPU. In other words, data-parallel, compute-intensive 
portions of applications running on the host are off-loaded 
onto the device.  

More precisely, a portion of an application that is 
executed many times independently with the same algorithm 
and on different data, can be isolated into a function that is 
executed on the device as many different threads. To that 
effect, such a function is compiled to the instruction set of the 
device and the resulting program, called a kernel, is 
downloaded to the device to be executed [11, 13].  

Both the host and the device maintain their own DRAM, 
referred to as host memory and device memory respectively. 
One can copy data from one DRAM to the other through 
optimized API calls that utilize the device’s high-
performance Direct Memory Access (DMA) engines.  

The amount of performance benefit an application will 
realize by running on CUDA depends entirely on the extent 
to which it can be parallelized. The code that cannot be 
sufficiently parallelized should run on the host, unless doing 
so would result in excessive data transfers between host and 
device [13].  

Amdahl’s law [14] specifies the maximum speed-up that 
can be expected by parallelizing portions of a serial program. 
Essentially, it states that the maximum speed-up (S) of a 
program is:  

 ܵ ൌ 	
ଵ

ሺଵି௉ሻା
ು
ಿ
	
 

Where P is the fraction of the total serial execution time 
taken by the portion of code that can be parallelized and N is 
the number of processors over which the parallel portion of 
the code runs.  

The larger N is (that is, the greater the number of 
processors), the smaller the P/N fraction. It can be simpler to 
view N as a very large number, which essentially transforms 
the equation into ܵ ൌ 1 ሺ1 െ ܲሻ⁄ . Now, if ¾ of a program is 
parallelized, therefore the maximum speed-up over serial 
code is 1 / (1 – ¾) = 4.  

For most purposes, the key point is that the greater P is, 
the greater the speed-up [4]. An additional caveat is implicit 
in this equation, which is that if P is a small number (so not 
substantially parallel), increasing N does little to improve 
performance. To get the largest lift, the best practices suggest 
spending most effort on increasing P; that is, by maximizing 
the amount of the code that can be parallelized. 
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When using CPU timers, it is critical to remember that 
many CUDA API functions are asynchronous, that is, they 
return control back to the calling CPU thread prior to 
completing their work. All kernel launches are asynchronous, 
and so are all memory copy functions with the Async suffix 
on the name. Therefore, to accurately measure the elapsed 
time for a particular call or a sequence of CUDA calls, it is 
necessary to synchronize the CPU thread with the GPU by 
calling cudaThreadSynchronize() immediately before starting 
and stopping the CPU timer. cudaThreadSynchronize() 
blocks the calling CPU thread until all CUDA calls 
previously issued by the thread are completed [11]. These 
methods are available in the CUDA library. 

III. PROPOSED ALGORITHM 
As mentioned earlier, for analyzing FT we have two ways: 
analytic approaches or MCS [2]. Analytic approaches are 
speedy and liable to mistake, and their calculations are 
limited to some special kinds of FTs, but MCS is time 
consuming, unmistakable, and is not limited in FT kinds [4]. 
Analytic approaches are inefficient for calculating large FTs 
and mostly MSC is used for this purpose, though MCS is so 
time consuming. Considering this fact, in this paper, we 
propose a method with parallel computing in GPU to 
decrease the execution time of the MCS that includes 
numerous iterations. 

However, in recent studies on FT, not only fault tree 
analysis includes the computation of failure time of FT that is 
described in the first phase, but also it takes account of 
sensitivity analysis for better understanding of FT. This 
analysis is also time-consuming and therefore we offer a 
parallel solution for this problem in the second phase. 

A. Speed-up algorithm to Monte Carlo simulation in FT 
analysis 

In MCS, we have to generate random numbers for FT entries 
and iterate this task for many times. The generated random 
numbers must be exponential or Weibull distributions [4]. In 
this paper, we choose exponential distribution to analyze FT. 
For this purpose, if variable R has a uniform distribution over 
[0,1), the random variable X is an exponential distribution of 
[4]: 

 ܺ ൌ 	െ
୪୬ሺଵିோሻ

ఒ	
 

Where variable λ is the failure rate of each component 
and its scale is mostly hour. Generated number X is the time 
to failure of the same component with λ [4].  

Each leaf of FT has a λ. For all MCS iterations, we set a λ 
to each FT leaf, and generate X for that leaf. Then, we pass X 
to the top nodes of FT with MAX, MIN, ADD, or other 
gates. We keep running this operation until we arrive at the 
root of FT. Consequently, each iteration computes an X that 
contains failure rate of FT. Ultimately, Xs average of FT root 
is calculated, which is known as the FT average failure rate. 

In the algorithm of “Fig. 6”, first, we assign the root of 
FT to the function argument E and then calculate X for each 
leaf of fault tree. Note that calculate times of X in this 
algorithm are equal to the number of MCS iterations for each 
leaf. Then this array is propagated to the top of FT. As an 
alternative, we could also execute the entire algorithm in 
MCS iteration count as in each iteration, we could allocate 
one X to each leaf, and propagate it to the top of FT. The 
second option seems to be useless in this project because it 
needs more iterations with heavier codes to be executed in 
each iteration. 

In the first iteration of the for loop, we firstly define a two 
dimensional array to save X of leafs. The first dimension is 
leaf ID and the second is iteration number. Then, for each 
iteration, we assign an X to this array.  

 

 
Figure 6.  FT algorithm 

In the next step, recursive FTAnalysis() function is called, 
which firstly checks the node to see whether it is a leaf or 

Node E = Root of FT
Array Prob[][] =  
  new[leaf counts][iteration of MCS] 
 
For(i = 0 to tree leaf count) 
{ 
 For(j = 0 to iteration of MCS) 
 { 
  Calculate X to every leaf;  
  Prob[i][j]=X; 
 }  
}   
double FTAnalysis (Node E) 
{ 
 If E is Leaf then  

Return Prob[E]; 
 

Else if E is an AND node then  
{ 
 FTAnalysis(E child); 
 Calculate max Prob of children 
  with CUDA; 
 Insert max Prob in E node; 
 Return max Prob; 
} 
Else if E is an OR node then 
{ 
 FTAnalysis(E child); 
 Calculate min Prob of children 
  with CUDA; 
 Insert min Prob in E node; 
 Return min Prob; 
} 
Else if E is a sequence node then 
{ 
 FTAnalysis(E child); 
 Calculate sum Prob of children 
  with CUDA; 
 Insert sum Prob in E node; 
 Return sum Prob; 
} 
Else if E is a cold, warm or hot  node then 
{ 
 Convert this node to equivalent 
  TTF that will be a tree ; 
 Calculate FTAnalysis(E); 
} 
Else if E is a FDEP  node then 
{ 
 Convert this node to equivalent 
  TTF that will be a tree ; 
 Calculate FTAnalysis(E); 
} 

 

Else  // E is a intermediate node 
 Return FTAnalysis (child of E); 

} 



 
 
not. In case of a leaf, Prob (probability) variable of the node 
is returned. Otherwise, if the type of the node is an AND one, 
then children of the node are checked, and if they are not leaf 
then FTAnalysis() function for children is called to determine 
Prob of the nodes. After the determination of children’s 
Probs, another function is called to calculate the maximum of 
children’s Probs in GPU. This function is a CUDA program 
that obtains and returns children’s Probs. Now, node Prob is 
equal to the max of children’s Probs. Considering the fact 
that iteration count is high and Prob variable dimensions 
count is equal to iterations count, calculating this amount of 
information is time-consuming and is considered to be 
processed in GPU. Subsequently, we attribute the returned 
value from GPU to node E and then return it to be used in 
other nodes.  

If node E is an OR or SEQ gate, the procedure will 
resemble an AND gate. However, in CUDA function of the 
OR gate, we must calculate the minimum of children, and in 
SEQ gate, we must calculate the sum of children’s Probs. 

If E node is a cold, warm, or hot spare or a FDEP gate, 
then we convert these gates into equivalent time to failure 
tree to calculate FT. Afterward, converted tree is analyzed by 
FTAnalisis() function. In dynamic states, we could also 
define a program easily to calculate the failure probability of 
these nodes, because of the advantage of software 
programming flexibility. Nevertheless, we use converting 
gates to TTF to collaborate with TTF idea and to compare 
this algorithm to TTF model. To this end, first we have to 
change existing dynamic fault tree nodes to equivalent TTF 
model and add some codes to FT algorithm expressed in 
“Fig. 6”. For instance, the TTF model for cold spare is “Fig. 
4” and its algorithm can be like “Fig. 7”. 

 

 
Figure 7.  random-selector algorithm 

In this algorithm, we used CUDA functions to accelerate 
the execution of the program. To define these functions, 
some prerequisite tasks are necessary to be accomplished at 
first. One of these tasks is to determine dimensions of CUDA 
function. These dimensions are used to define the number of 
grids, blocks, and threads in a CUDA program.  For example, 
“Fig. 8” defines 10*10 threads in a 4*4 blocks in a GPU.  

 

 
Figure 8.   Defining threads and blocks 

The blocks variable defines the number of blocks that has 
a two-dimensional index and for each block, we have two 
dimensional indices of threads, so in this example we have 
10*10*4*4=1600 threads [11, 13]. All of these dimensions 
are three-dimensional variables and if any of them were not 
defined, they would be assumed as one-dimensional. 
Therefore, in this example, block dimensions are (4, 4, 1) and 
thread dimensions are (10, 10, 1). 

For calling CUDA code, we must do like “Fig. 9”: 

 

 
Figure 9.   Calling a CUDA function 

This code executes a desired function for each thread of a 
block. In other words, the code will be executed for 
blocks*thread times. Since GPU has numerous cores, each 
thread is executed in one core, consequently the speed of the 
execution rises. Therefore, for more speed-ups, more cores 
are a good choice. 

B. Speed-up algorithm to sensitivity analysis 

For a FT analysis, determining failure time of fault tree root 
is not adequate, because this just identifies the uncertainty 
analysis of fault tree, and does not make any suggestions 
about the answer to the following questions: “where is the 
problem or the most faulty part in FT?” or “how do results 
change by changing input parameters?” or “what is the most 
cost-effective way to improve reliability?”. Sensitivity 
analysis provides some information about the important 
nodes that have the most effect on the root of FT. 

Sensitivity analysis is one of the major outputs of an 
FTA, which is calculated for the top event. This top 
sensitivity analysis establishes the significance for all of the 
events in the fault tree in terms of their contributions to the 
top event probability [8]. 

One useful point about sensitivity analysis is that they 
generally show relatively few events contributed to the top 
event probability. In many of the past FTAs, less than 20% of 
the basic events were important contributors in the fault tree 
contributing more than 90% of the top event probability. 
Moreover, the importance of the events in the fault tree 
generally clusters into groups that differ by orders of 
magnitude from one another. In these cases, the importance is 
so dramatically diverse that they are not generally dependent 
on the preciseness of the data used in the FTA [8]. 

As mentioned above, there are two kinds of sensitivity 
analyses: absolute and relative sensitivity analysis. Absolute 
sensitivity analysis is calculated with partial derivative of 
basic events that are not very time-consuming. On the other 
hand, relative sensitivity analysis is calculated by changing 
basic events and analyzing top event changes. In this paper, 
we discuss relative sensitivity analysis, and call it sensitivity 
analysis. 

In a sensitivity analysis, an input data parameter, such as a 
component failure rate, is changed, and the resulting change 
in the top event probability is determined. This is repeated for 
a set of changes either using different values for the same 
parameter or changing different parameters, for example, 
changing different failure rates. Usually for a given 
sensitivity evaluation, only one parameter is changed at a 
time. This is called a one-at-a-time sensitivity study. 
Sometimes two or more parameter values are simultaneously 
changed to study the interactions among the parameters. 

The decisions that are made to carry out sensitivity 
analysis include which data parameters to be changed and 
what values to be used for the parameters. A small change in 
a data parameter shows the linear effect of the change on the 
top event probability. Assigning 1 or 0 or a value to the 
failure probability of a basic event provides the maximum 
effect of changes in the parameter. It can be shown that using 
a small change or using 1 or 0 for the event probability gives 
the same information as the sensitivity analysis [8]. 
Therefore, intermediate changes in the parameters are 
selected for the sensitivity studies. 

Ret-type func-name<<<blocks, threads>>>(arguments);

Dim3 blocks = (4, 4); 
Dim3 threads = (10, 10); 

int j=a random integer between 0 and spare child count-1
For(int i 0 to spare child count) 
 If  i=j 
  return FTAnalysis(child i); 
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As indicated in algorithm “Fig. 6”, we defined a Prob 
variable to save failure time of FT, and in this case, we can 
use this variable and the same algorithm to calculate FT 
failure time. Instead of MCS iterations, we implement some 
other iterations in which one of the probabilities of leaves 
changes. In other words, first loop of the algorithm presented 
in “Fig. 6” resembles the algorithm in “Fig. 10”.  

 

 
Figure 10.  Section of sensitivity analysis algorithm 

In this algorithm, first we define a two-dimensional array 
whose first dimension is “the number of leaves + 1” and the 
second is “the number of leaves”. This two-dimension matrix 
saves some random numbers calculated by the X formula in 
all lines. These numbers are default numbers and then in each 
line of matrix, one of them is changed. The second loop 
calculates the rest of the matrix by summing previous 
random number and 0.001 to see changes in the fault tree 
root. The rest of the algorithm is the same as the algorithm in 
“Fig. 6” and ultimately, all of the root sensitivities for basic 
event changes are inserted in Prob variable of root node to be 
checked and analyzed. 

In this algorithm, we could add some policies to indicate 
sensitivity answers in the end of the algorithm. To this end, 
we could sort fault tree analysis answers and show the 
greatest answer, that is the node related to this answer has the 
greatest importance in FT. Furthermore, safety of this node 
should be considered. 

We utilized only one node change in the algorithm, 
however, sometimes it is necessary to change two or more 
nodes concurrently to see FT sensitivity. For this purpose, we 
could obtain the leaves that should have been changed by the 
user, and we could change them, and execute FTAnalysis() 
function to see the answers. In addition, we could change all 
of the nodes in pairs or in sets respectively, and send them to 
the function to get answer.  

If the fault tree used is a big one, the presented sensitivity 
algorithm will be very functional, because sensitivity analysis 
is a manual analysis and in a massive analysis, it is likely to 
make a mistake. Therefore, this algorithm is very useful in 
large fault trees. 

Sensitivity analysis is almost a troublesome one and the 
majority of activities to calculate sensitivity analysis are 
manual methods. Besides, in large FTs, determining nodes to 
be changed is very complicated task. On the other hand, there 
is not a distinctive technique to analyze the sensitivity of a 
fault tree; hence, the presented sensitivity analysis algorithm 
in “Fig. 10” is not a consistent algorithm. In other words, 
since sensitivity analysis is very changeable, it is likely to 
change this algorithm to another form according to the 
objective. 

On the whole, for analyzing fault tree, we speed up MCS 
and sensitivity analysis, and since these two are adequate to 
analyze a fault tree in action, thus we only offer solutions that 
are almost enough for analyzing every fault tree. In 
particular, the proposed method is very helpful in analyzing 
large FTs. In addition, it reduces mistakes that are very 

frequent in other methods. For this reason, the proposed 
method has obvious advantages over other earlier works on 
analyzing large FTs. 

IV. IMPLEMENTATION 
For better visualization, we designed a user interface, which 
is illustrated in “Fig. 11” and is developed with Java 
programming language by NetBeans IDE (7.0). This 
application contains some modules of FT design for user’s 
convenience. In this UI, the user is able to design his own FT 
by gates, events, or other equipments that are included in a 
board on the application design tools.  

In addition, there is a fault tree designing area that has a 
dynamic scroll bar. To illustrate this aspect of application, 
suppose the FT designed by user is so large that cannot be 
placed in the design area. In this case, user can zoom out the 
design area, move to an unoccupied area, and then zoom in to 
keep drawing the rest of tree. To take this fact into 
consideration, we must say that the reason is in consistent 
with scroll bar, which means that in zooming in or out, scroll 
bar has a constant length.  

This UI gets the FT designed model from the user and 
then saves it in an XML file. When we save the FT in an 
XML file, the UI checks the FT, and if there is any mistake 
or nonstandard gates, then the application can correct and 
save it. In a regular FT analysis, we should save dynamic 
gates too, however, sometimes it is necessary to change 
dynamic gates to static ones and save them. In this case, UI 
checks the FT, and if there is a cold, warm, or hot spare and 
FDEP, then UI changes it to the static gates (OR, AND or 
SEQ) [3, 4, 15]. In this manner, the generated TTF will be 
very simple to use, and executed time will be less because 
dynamic nodes are very complicated and time-consuming in 
execution.   

This application also supports encapsulation concepts 
because when user clicks in the analyzer of FT button to see 
the FT analysis answer after execution, he/she will see the FT 
failure rate. In this case, the user will not be involved in the 
CUDA code and it will be executed automatically. 

Then, by means of the remote procedure call method, the 
UI calls the program written in C programming language 
including the CUDA code. Calling this code causes to read 
the FT saved in XML file and to execute the code. At last, 
remote called method will return the FT failure rate and the 
UI will get and show it. 

This UI also has a button to arrange the FT designed by 
user. This button will arrange the entire designed tree to a 
symmetrical tree that is convenient to understand. 
Additionally, the user can calculate the FT probability with 
probabilities attached to each leaf (the probability for each 
node also should be identified by the user). In addition to 
analyzing fault tree with Monte Carlo simulation, the user 
has a choice to calculate his fault tree manually.  

Moreover, the user can save FTs in an XML file and later 
he or she can load and change it. We use XML files to save 
because of their power. In fact, XML files are standard, 
machine friendly, and all of the operating systems support 
them, and they can be used on the internet and all 
programming languages. 

In the programming section, it is necessary to note that 
CUDA programming language just supports variables of data 
types defined by C language and other data types, such as 
objects defined by the user, must be in host memory, and 
their used variables should pass to device memory. If array 
data type is defined by a user-defined object, it cannot be 
passed to devise memory.  

Array Prob[][] =  new[leaf counts+1][leaf counts];
For(j = 0 to leaf count) 
{ 
 Calculate X for every leaf;  
 For(int i = 0 to leaf counts +1) 
  Prob[i][j]=X; 
} 
For(i = 1 to tree leaf count+1) 
 Prob[i][i-1]= Prob[0][i-1] + 0.001; 
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To execute CUDA code, we used a NVIDIA GeForce 
8600 GS graphic card that has 16 CUDA processors of 600 
MHz, core clock rate. The CPU used for this examination 
was Intel core 2 Duo with 1.83 GHs clock rate. Moreover, 
the RAM was 2 GB with 987 MHs clock rate. This 
implementation of the code was done using a DELL laptop 
with a XP/32 bit windows.  

We implemented this algorithm for CPU and GPU in the 
same manner to compare the results obtained from each of 
them. The CPU implementation was in C programming 
language and GPU implementation was in both C and CUDA 
programming languages, C for host code and CUDA for 
devise code. We compared two FTs, first with 5 static nodes 
and then with 20 static nodes. For each FT, we calculated the 
execution time with the iterations 1, 10, 100, 1000, 10000, 
100000 and 1000000. The execution times for GPU are 
shown with blue color and execution times for CPU are 
showed with red color. 
 

 

 
Figure 11.  FT design user interface 

V. EVALUATION 
 As mentioned earlier, we implemented our speed-up 
algorithm with two approaches: CPU FT computation and 
both CPU- GPU FT computation. 

 “Fig. 12” is a FT with five nodes and it shows that the 
GPU calculation of FT begins from about 100 ms when 
iterations count is 10, and finally in the 1000000 iterations, it 
reaches about 1s. However, the CPU calculation of FT when 
iterations count is 10 begins in 1 ms and then grows up 
exponentially where in 1000000 iterations it reaches 10000 
second. This figure shows that the increasing of the GPU 
computation is almost linier but the CPU computation is 
exponential. Therefore, in large iterations the CUDA works 
better than C programming language. Also, this figure shows 
that after 100000 iterations, CUDA programming language 
will work better than C programming language and will 
fasten the FT computation. 

“Fig. 13” is FT with 20 nodes and like “Fig. 12” it shows 
that GPU calculation of FT begins from about 100 ms when 
the iterations count is 10 and grows up almost like a linier 
function, but the CPU calculation of FT, when the number of 
iterations is 10, begins in 1 ms and then grows up 
exponentially where in 1000000 iterations it reaches 10000 
seconds. Also, this figure shows that after 30000 iterations, 
the CUDA programming language will work better than C 
programming language. 

These two diagrams show that with the development of 
FT, its CPU computation will increase, but in GPU 
computation, this increase is not too much, therefore in 
addition to working better in the large iterations, this 
algorithm works better in large FTs. In case FT is large and is 
for a critical system, we have to increase the iteration count 
so many times to reach a precise FT computation answer. For 
such a system, this algorithm works very well and it will 
decrease the time that is necessary for computing FT failure 
rate. 

 

 

Figure 12.  FT calculation with 5 nodes 

TABLE I.  EXPERIMENTAL RESULTS 

FT Speed-up 

 
For Fault Tree existing of 5 

nodes 

 
10 

 
For Fault Tree existing of 20 

nodes 

 
24 

 
The experiments show that the implementation of the 

algorithm can significantly reduce the required time for 
MCS, especially when the fault tree is large. In the normal 
FTs (not very large or very little), we have a speed-up about 
310 times as long as that of CPU when FT nodes were 100 
for a Fault Tree with 100000 iterations, we had 310 times 
speed-up. 
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Figure 13.  FT calculation with 20 nodes 

 

 
Figure 14.  Sensitivity analysis of FT in CPU and GPU 

“Fig. 14” is a diagram to compare sensitivity analysis 
speed in CPU and GPU processors. In this diagram, we can 
see that when node counts is 10, then sensitivity analyzing 
time for both GPU and CPU is approximately 0.0001. When 
node count is 100, then GPU is 10 times speedier than CPU. 
Moreover, when node count is 1000, speed-up rises to 100 
times. Therefore, in sensitivity analysis we approached a 
speed-up of about 100 times in proportion to similar 
algorithm in CPU.  

VI. CONCLUSION 
Fault tree analysis can perform the reliability analysis of 
critical systems. One of the approaches for the fault tree 
analysis is Monte Carlo simulation. In this paper, we 
purposed a novel approach to speed up Monte Carlo 
simulation for analyzing fault tree and to sensitivity analysis 
with parallel computing in GPU. Using the time-to-failure 
tree, we modeled fault tree with Compute Unified Device 
Architecture (CUDA), which is used to accelerate the 
execution of loops with many repetitions.  

Moreover, we accelerated Monte Carlo simulations with 
our new approach. In addition, we developed a user-friendly 
software to visualize fault tree so that the users can generate 
fault tree in detail.  

The computational outcomes validate the effectiveness of 
the suggested approach, as we approached about 310 times 
speed-up. Our software can obtain much more than 310 times 
speed-up by using stronger GPU. Our future work is the 
implementation of a CUDA code generator for the people 
who do not know CUDA so that they can write their codes in 
other languages and this generator can exchange their codes 
into CUDA. 
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