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Abstract- Recognizing patternsin time series has become a
necessary machine learning task in many fields including
medicine, finance, business and oil and gas industry. In this
paper we propose a feature-based approach to recognize
patterns in drilling time series data. Our approach consists
of four phases which are: data preparation, feature
extraction, feature selection and classifier training. In the
first phase, the sensor-generated data required for building
the recognition models are collected and prepared. In the
second phase, the prepared time series data ar e transfor med
into a compact representation. The compact representation
of the data consists of a set of statistical features extracted by
dliding a window across the time series. In the third phase,
numer ous feature selection algorithms are applied to select a
subset of most informative features from the statistical
features set. Finally, the selected features are exploited to
train a classifier that isused for final pattern recognition.
Numerous feature weighting and selection algorithms were
tested to find which statistical measures clearly distinguish
between several different patterns. In addition, many
classification techniques were employed to find the best one
in terms of accuracy and speed. Experimental evaluation
with real data shows that our approach has the ability to
extract and sdlect the best features and build accurate
classifiers. Four different real-world drilling scenarios were
used in the experiments. The performance of the classifiers
was evaluated by using the cross-validation method.

Keywords: Operation recognition, Time series classification,

Statistical Features, Features Selection.

|. Introduction

Time series data are omnipresent and broadly @laila
industrial applications. In the oil and gas indysit is
very common to monitor the basic drilling actiongls as
moving the drill string, rotating the drill stringnd
circulating the drilling mud. Many mechanical paegtars,

such as hook load and block position, are contislyou

measured during drilling oil wells. These parametare
measured by a group of sensors located aroundithiegd

multivariate which means that many variables - eigh

our case - will be measured at each time point.

After collecting the data at the rig site, datensferring
systems and data storing systems can be employed to
transfer and store these data anywhere in the world
Although the sensor measurement and transferring
systems are being developed rapidly, the techniadies
data interpretation and analysis have not devel@pdle
same speed. There is a lack of systems able to make
efficient use of all the data available to improthe
drilling process.

Improving the drilling process relies on performanc
analysis that is primarily based on daily activity
breakdowns [1]. Drilling operations recognition t&yas
break down the total drilling time into a list ofell
defined operations e.g. drilling, rotating and make
connection. These systems provide the engineers wit
detailed information about what is happening on rilge
site. In the last decade, numerous operation régogn
approaches have been proposed. Some of these
approaches take as input the sensors data themsahd
recognize the drilling operations. Adriane et 3].gresent
a drilling operations classification system usingpfort
Vector Machine (SVM). The input of this system igef
sensors values with a specific timestamp, and titgub is
one of six predefined operations.

Drilling time series data have a very high
dimensionality. The high dimensionality of the data
makes the access time very slow and the total ctatipn
time more expensive [3]. That means, applying mahi
learning techniques directly on raw time serieadstnot
practical. What is needed is a higher-level repregsn
of the raw data that allows efficient computati@md
extracts higher order features. Esmael et al. {dppse a
new representation of drilling time series data olhi
combines trend-based and value-based approximations
The proposed compact representation consists dbaljen

rig and wired to a measurement system called a mucstrings that represent the trends and the valuesaoh

logging system. Fig. 1 shows sensor-generated senes

data of eight hours of drilling. This time series i

variable in the time series.
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Figure 1. Drilling time series data

In this work, we improve the approach proposed in|. The General Framework
[5]. This approach is based on creating a compact

representation of the raw sensor data in a givere ti The proposed approach is simple but efficientsgsu
range. The compact representation contains a set H1€ classical steps of data preparation, featuteaction,

statistical features calculated from the raw data.

Many papers suggest using statistical featuresdognize
patterns in time series. Lambrou [6] uses meariaree,
skewness, kurtosis and entropy as statistical featto
classify audio signals. In [7], visual analyticghaiques
are used to explore the statistical features ofs@mn
measurement. The results show how the statistedlifes
are important in detecting different situations
underlying drilling process. Moreover, monitoringwf

feature selection and classifier training. The gahsteps
of the approach are sketched in Fig. 2 and destribe
more details later.

The input of the approach is the raw sensor-geeamata
which called “channels®. Most of the mud-logging
systems provide 10 time series channels that reptéise
most important mechanical parameters. Table 1 descr

in the commonly-used channels.

TABLE 1. STANDARD DATA CHANNELS

features such as Skewness and Entropy can be eosid
as powerful tool to observe very critical situasoe.g.
Stuck Pipes) in drilling process.

In this work, we focus on developing an approactt th
is not custom-made to solutions of specific appiica
areas, but that will be applicable to other fieddswell.

The remainder of the paper is organized as follows:
Section Il presents the general framework of our
approach. Section Ill introduces the data prepamati
phase. Section IV shows the details of statistieatures
extraction phase. Sections V, VI and VIl introdute

Channels Description
flowinav Average mud flow-rate
hkldav Average hook load
mdbit Measured depth of the bit
mdhole Measured depth of the hole
posblock Block position
prespumpav | Average pump pressure
ropav Average rate of penetration
rpmav Average drill string revolutions
tgav Average torque
wobav Average weight on bit

details of features ranking and feature selectibasps.
Section VIII shows the details of the classificatitask,
and the last section IX displays the experimer@siiits of
the approach.

In other words, the input is a multivariate timeisg with
ten variables (channeldJ;,T,,...,T;o}, whereT; is a
series of real numbefg,, x,, ..., x,} made sequentially
through time.
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which is a measure of variability of the data. QRS

. ™ calculated by this equation:
? S
(9C§ % IRQ = Q3 — 0 (2)
j > i > HereQ,, Q; are the middle values in the first and the third
@ @ half of the data set respectively. An outlier iy aaluex

________________________________________________________________

that is at least 1.5 interquartile ranges below fihst
quartile@,, or at least 1.5 interquartile ranges above the
third quartile Q; . One of these equations should be
satisfied:

: Data Preparation

Feature Extraction * < Q= 15xIQR (2)

v v
Feature Selection

2 2

x> Q; +1.5%x IQR 3)

: Boxplot (Box-and-Whisker plot) was used as a
. graphical representation of dispersion of the datather
i words, it was used to display the outliers graghica
Fig. 3 shows that there are no outliers in the “itficind

“mdhole” data taken from one drilling scenario. .Fg
shows the outliers in “Hook load” and “Block
position* data taken from the same drilling scemari

The length of the box equals to the difference
o between Q3 and Q1 which is IRQ. The red line drawn
Classifier inside the box represents the median value. Al gaints
@ @ @ appear above the top horizontal line or below tatamn
horizontal line will be considered as outliers.
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Figure 2. The general framework. 3800 F
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After receiving the input data, these data willdeeaned = % 7

@

and prepared, a set of statistical features will be“ 200f

[m]

T

|
calculated, and then a subset features will beetleand 1500 l | .
finally a classifier will be trained. Several teddues were 1000 : : .
used in the third and fourth phases in order tathyetbest s00f | | .
performance in terms of speed and accuracy. of — — .
The final output of the approach is a sequenceritiing mdbit mdhole

operations that have different durations.

I11. Data Preparation x 10°

35 4

The sensor-generated data are not directly ready fc
building the classification models. These data @iontin 3F
most cases, outliers and missing values that mfiliénce
the accuracy of the features calculation.

Data cleansing is an elementary phase that shoategde
all others machine learning phases. In data clagraisk,
two subtasks were executed which are: 150

90

251
851 1

2k
80 B

» Identification and handling of missing values 1k
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1
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|
70F | 4
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» Identification and handling of outliers 65 .
051 4
Outlier is a numeric value which has an unusually sor ~¥7 |
high deviation from either the mean or the medialue. or — ] 55} -
Although there are numerous sophisticated algostfon Hook load Block position

outlier detection, a simple statistical methoddediin this
work. This method is based on interquartile ran@R] Figure 4. Boxplot for hkldav and posblock channels
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After identification the outliers, these outliers aell as
the missing values were substituted by the meamevat
x; is considered as an outlier or missing value, tthes
value will be substituted by:

Xi_1 + Xx;
x; :% (4)

Although this data cleansing procedure is simpleis i
very efficient and can remove most erroneous vaftoes
the data.

Data Normalization

Esmae, Arnaou, Fruhwirth and Thonhauser

A. Arithmetic mean (AM)

The arithmetic meanu is the average of the
values{x,, x,, ..., x,,} located within a time window. It
was calculated by equation (5):

m
)
ll—m. Xi

i=1

B. Sandard Deviation

The standard deviatiom was calculated by equation (6)
to measure how the valuds,, x,, ..., x,,,} are spread out.

()

Data were normalized to reduce unwanted variation

between datasets as well as to allow data on differ

scales to be compared by converting them to a cammo

unified scale.

Since the total depth of the drilling wells difftom a
well to another, all channels that are relatednt depth
(e.g. “hkldav”, “mdbit” and “mdhol”) were normalizeby
dividing by the total depth of the selected wellheT
unrelated channels (e.g. “posblock” and “ropav”)rave
used without normalization.

V. Statistical Features Extraction

The second step of the approach is feature exargcti
which is the transformation of patterns into featuthat
are considered as a compressed representation.
Drilling time series data have a very high dimenalay,
therefore mining such data is a challenge becausggea
number of features can be extracted from the rawe [@4
To reduce the dimensionality of the data, a higlelle
representation is built where a set of significtatures
are calculated. These features provide an appraximaf
the original time series data.

For each time series variable = {x;,x;, ..., x,},

i =1..10 many statistical features were calculated to

measure different properties of that variable. bighows
the main groups of the calculated statistical messsiand
below is some details about these measures.

Window
—

/Wi

1) Measures of Central Tendency
Mean, Median, Mode

2) Measures of Variability
Variance, Standard Deviation, IRQ, Range

.% 3 Measures of Shape
> Skewness, Kurtosis, Second Moment
4, Measures of Position
Percentiles
5 Measures of Impurity

Entropy

Time

Figureb. Statictical Features Extraction

(6)

C. Sandardized moment

It is the normalization of the"kmoment with respect to
standard deviation. It was calculated by the equati

Hi @)

ok
Here u, is K" moment about the mean. The third
standardized moment (skewness) and fourth starmbatdi
moment (kurtosis) were calculated and used asriesatu

D.Kurtosis
Kurtosis was calculated by equation (8) to meashes
peakedness of the probability distribution of tia¢ad

_ Ha

Ku=—
e

(8)

wherey, is the 4 moment about the mean, and given by:

1 m
fe == i) ©

E. Skewness

Skewness was used to measure the asymmetry otae d
It was calculated by equation (10):

K3

Sk—?

(10)

Wherey; is the 3 moment about the mean, and given by:

1 m
By =— > () (1)
i=1

F. Entropy

Entropy was used to measure the impurity associaiid
a random variable. The entropflyof a discrete variablg
with possible value§x,, x,, ..., x,,} and probability mass
function p(X) is given by:

HO) = = )" PG logoP(x) (12)
i=1



A Statistical Feature-Based Approach for Operations Recognition in Drilling Time Series 458

G.Root Mean Square (RMS) 2242 — 1 =7.06 e7? possibilities to combine all the

Root mean square is a measure of the magnitudesef a features. That means using exhaustive search tis no
of values. It is the square root of the arithmetiean of ~ feasible in finite time, and other selection algums

the squares of the original values. It was caledatsing Should be considered. . o
the following equation (13): The initial step in our feature selection phaseeisoving

the correlated features in order to drop the dinosadity
of the data and increase the computational effigien
(13) A correlation matrix (242x242) was calculated tedh
the correlation strength between features, then we
searched for highly correlated ones and removedaodne
H.Percentiles them. In this step 24 features were removed.
A percentile is the value of a variable below whigh
certain percent of observations fall. In other veorithe V1. Feature Ranking
percentile is a valug, such that at mogtl00 x p)% of

the measurements are less than this value 1dic features with some statistical test, and then satgthe k

(1 - p)% are greater. features with the highest score or those with aresco

Percentiles were used to measure the position. Fivgeater than some threshold t. Such univariatergildo
percentiles were calculated and used namely: p28, P o take into account feature interaction, but thégw a
P50, p75 and p90. first inspection of the data and most probably pev

" . reasonable results [10].
In addition to the above mentioned measures, basic We used 10 different feature ranking algorithms
statistical functions were calculated like sum, mimx, (described in table2) and measured the performarice
etc. Overall 22 statistical features were calcualdte each them.

channel namely: mean, median, mode, variance, atdnd

RMS =

The fastest method for feature selection is rankieg

deviation, root mean square, interquartile rang®,IR TABLE 2. FEATURE RANKING ALGORITHMS
range, skewness, kurtosis, second moment, p10,p525, [ Algorithm Description
p75, p90, min, max, sum, first, last and entropy. SAM Calculates a weight according to "Significance Awisl
The total number of calculated features equals: bamof fSr M'Ctrhoarfraf : T .
. _ _ ses the Tactors of one O € principal compongnts
channels times Number of features = 11 x ?2 = 242 PCA analysis as feature weights
features. Al_l thege features were calculated U_Sm!ple SVM Uses the coefficients of the normal vector of @ain
software written in Matlab. This software takesrgsut a support vector machine as feature weights
list of channels and a time range (start timestamgp end Chi Cal%ulate_z the ;elevalmce fofha fer?ture by gomp_tfﬁrl:g
H H ot each attribute the value of the cl I-square Siatrgt
timestamp) and returns the mentioned statisticalsmes. Squared | pect to the class attribute
. . Measures the relevance of features by sampling
V. Feature Ranki ng & Selection Relicf examples and comparing the value of the curremtrfed
for the nearest example of the same and of a differ
High dimensional data, like our dataset, which has class

hundreds of features, can contain high degreag@girant | Gini index g?'F!J'ates, th_edfe'evaﬂce of the attributes basethe
and redundant information which might greatly reslttee Inl Impurlty index

Information | Calculates the relevance of the attributes baseth®

performance of learning algorithms.[g]. Therefdeature Gain information gain

selection becomes Very necessary in our approach. Calculates the correlation of each attribute witle
In the feature selection step, we seek to choisgbaet of Correlation | label attribute and returns the absolute or squeaéae
relevant features with high predictive value foeating as its weight.

robust  learnin models Feature selection LS Maximum Selects Pearson correlation, mutual informatiorFor
u Ing ' u ! Wi test depending on feature and label type

implemented to improve the performance of our lemyn | Relevance | o icainominal).
models by increasing the accuracy of the classiferd | ;.. tainty | Calculates the relevance of an attribute by meagri
speeding up learning and classification processes. the symmetrical uncertainty with respect to thssla
addition, feature selection improves model intetqdgity ) ) )

because it is much easier to tell an engineer fiioah Altho_ugh the aforementioned algorithms did not mm:ml _
hundreds of features these 10 are important to thidlentical results, there was about 70% of simyarit

classification task than to explain the influendetloe ~ Petween these results. For example most algorithuats
hundreds features. flowin-p90,  wobav-skewness,  rpm-variance  and

prespumpav-range features in the top of the rarlishg

From a theoretical perspective, the best featuaes c o
be selected using brute-force search, also knowf€ature number optimization _
as exhaustive search of all possible subsets of The resulting question now is: How many features
features. For a dataset with n features, exhaustaech Should be used to get the best model in termsairacy?

needs (21) possibilities. In our case we have 242 featured © answer this question, many tests were perforieel.
yielding: generated many models with different number ofufiesst

and calculated the accuracy for each one. We dtaitd
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the top 150 features and then reduced this nunob&0@, In Fig. 7 the results are sketched, ropav-p90 Mmees t
50 and 25. Table 3 shows the results. For mostithiges, leading impact followed by wobav-skewness, mdhole-
models trained with 50 features have the best acgur p75, etc.

To select the best number of features accuratél P The first error values in Fig. 7 give us the modsiors
algorithm, which gives the best accuracy, was uged using only ropav-p90 as input, the second values th
rank the features. We started with the top featare] errors using ropav-p90 & wobav-skewness as infé, t
each time we added the next top feature until wslied third values the errors using ropav-p90 & wobav-
all features. skewness & mdhole-p75, etc.

TABLE 3. FEATURE RANKING COMPARISON

(150, 100, 50 AND 25 FEATURES) 03 v
{52 -
; Accuracy [%] 03 \ ST ade L Smee o= Learning
Algorithm 150F [ 100F | B0F 25F A o ALY [ eesns
SAM 80.29 | 81.19 75.12 66.06 L 0% 3
PCA 8329 | 81.38 | 8572 80.74 S
SVM 80.59 81.09 76.33 66.06 w 021
Chi Squared 8231 8241 83.19 7968 =
Relief 81.29 82.2 83.19 78.57 & 0151
Gini Index 80.89 | 80.69 81.59 80.08
Information Gain 81.6 81.19 81.88 80.39 0.1 1
Correlation 80.89 84.22 83.3 80.21
Maximum Relevance|  80.69 82 79.31 79.58 005 1
Uncertainty 80.89 | 82.61 85.51 82.91
0 1 T rrrrrr
7] w0+ - X 4D
Fig. 6 shows the accuracy curve as a function ef th 9&8%9&& 5 §§%I§ §g GSs
features number. It's clear that with 38 featuress will >2S03sEESSR5 2650
get the most accurate classifier, but also withy ol gxlczesocEPor §§
features we will get an acceptable result. SeE 3 >3 Z53-5@aac
82" =30 2= Z8cwn
88 <) £gq 9 % z2
2 5 0 [oR = O o
86 - %Q— -
5| o
o
8

9]

Figure7. Forward Selection

Accuracy [%]
=]
o

~
3

VIII. Classifierstraining

~
a

~
I

After extracting the features and selecting thestmo
informative ones, we are ready to start classificat
process. Five classification techniques were ugethis
Figure 6. Accuracy curve as a function of the featureswork' The_s_e_ techniques are: Support Vector Machine
numbers. (SVM), Artificial Neural Network (ANN), Rule Induain

(RI), Decision Tree (DT) and Naive Bayes (NB).

0 50 100 150 200
Features Number

VII. Forward Selection Methods Each one of these classifiers contains some

Forward selection method was used to bridge the gaparameters that can be tuned to improve the acgwhc
between fast, but univariate filters, on the onachaand the classification process. Numerous values anidmgpof
slow, but multivariate exhaustive search, on theept these parameters were tested to get the bestseBigt 8

hand. shows the structure of the neural network usedhis t
Forward regression starts with creating models gusin WOrK.
exactly one feature. So we trained in the firsp steveral Input Layer Hidden Layer  Output Layer

networks using only the first feature as input,nthibe
same procedure using the second feature as inglt ar
continued until the last feature was used as singidel

input [12]. The feature which yields the lowestoerr = Class
(ropav-p90) will be considered as the feature izt the

most impact to the model. —p Class
In the second step we made new training runs \eplav-

p90 as fixed input and adding exactly one of the

remaining features as second input. We performed th =P Class,

procedure until all features were used as modeitinp
Many networks were trained to obtain as result the
ranking of the input with respect to the model erro Figure 8. The structure of the neural network
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A feed-forward neural network was trained by a  The proposed approach was applied to all scenarios.
backpropagation algorithm (multi-layer perceptrofihe  RapidMiner [13] was used to train neural networnker
structure of the neural network has three layamput, induction, naive Bayes and decision tree classifier
hidden and output. The input layer consists of inpuLIBSVM [14] was used to train support vector mae&hin
neurons which receive the input (statistical feadur The classifiers which belong to the general categorkeshel
output layer consists of output neurons which repnéed  methods. The most important point was taken intmat
the classes (drilling operations). when using SVM is selecting an appropriate keraetj
determining the best parameters.
The performance of the classifiers was evaluateddtyy Most people randomly try a few kernels and pararagte
the cross-validation method. We found that the worsand in most cases they cannot build an accurassifiéa.
classifier —in most cases — is Naive Bayes, andbdst In this work, the procedure proposed by Hsu efZi]
one is support vector machine and rule induction. was followed. This procedure consists of the folloyv
steps:

IX. Experimental Results » Transform data to the format of an SVM package

To evaluate our approach, we collected data fromn fo
different drilling scenarios described in tableTéhe time
versus depth curve for scenario#1 is shown in &ignd
the histogram of its operations is shown in Fig. 10

Conduct simple scaling on the data

Consider the RBF kernel K(x,y)=Exp(|x-yf)

Use cross-validation method to find the best
parameters C and

TABLE 4. FOUR DRILLING SCENARIOS » Apply the best C ang to train the whole training set

Scenario | Instances | Duration [day] | Depth [m] Classes * Test the classifier
#1 991 95 7825 5 _ _
#2 1250 190 4402 9 To measure the improvement gained as a result of
#3 770 87 4863 7 using feature selection, two groups of experimewtse
#4 470 41 4004 4 taken place. In the first group, all the classHievere
trained using the whole features set. In the segvodp,
Time [Day] all the classifiers were trained only with the stde
0 20 0 60 80 100 features.

0 Table 5 shows the results of the first group of the
1000 experiments. Table 6 shows the results of trairtimg
2000 classifiers using only the top 38 features.

F 3000 TABLE 5. CLASSIFICATION RESULTS (ALL FEATURES)
z11000
g . Accuracy [%]
& 5000 Seenarios NN [ RI | NB | DT | SvM
#1 78.2 79.08] 65.02 72.5p 79.8
6000 #2 72.05| 6837 60.33 55.00 74.12
7000 #3 78.12| 78.90] 63.95 75.26 79.10
8000 #4 76.75| 78.56) 64.39 75.06 77.5%7
Figure 9. TxD curve of scenario#1 TABLE 6. CLASSIFICATION RESULTS (38 FEATURES)
0,
Scenarios Accuracy [%]

soo | ANN RI NB DT SVM
l #1 82.51| 85.45 67.74 76.76  83.90
#2 70.84| 70.51] 63.33 54.1p 2.4
4

9

& v ou
h 2 0

#3 80.52| 86.41] 66.74 79.3 83.42
#4 81.90| 85.96 674% 785 82.70

W
n 5

The accuracy improvement rate is about 10%, and the
classification and training process become mucterfas

Frequency
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