
International Journal of Computer Information Systems and Industrial Management Applications.

c©MIR Labs, www.mirlabs.net/ijcisim/index.html

Search Graph Formulation and Hasting’s
Generalization of Metropolis Algorithm For

Solving SVP
Ajitha Shenoy K B1, Somenath Biswas2 and Piyush P Kurur3

1,2,3Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur, INDIA.

1ajith@cse.iitk.ac.in, 2sb@cse.iitk.ac.in, 3ppk@cse.iitk.ac.in

1Department of MCA, Manipal Institute of Technology,
Manipal University, Manipal, INDIA

ajith.shenoy@manipal.edu

Abstract: Shortest Lattice Vector Problem (SVP) has numer-
ous applications spanning from robotics to computational num-
ber theory, viz., polynomial factorization. At the same time,
SVP is a notoriously hard problem. Not only it is NP-hard, there
is not even any polynomial approximation known for the prob-
lem that runs in polynomial time. What one normally uses is the
LLL algorithm which, although a polynomial time algorithm,
may give solutions which are an exponential factor away from
the optimum. In this paper, we have defined an appropriate
search space for the problem which we use for implementation
of the Hasting’s generalization of the Metropolis algorithm. We
have defined a suitable neighbourhood structure which makes
the diameter of the space polynomially bounded, and we ensure
that each search point has only polynomially many neighbours.
We also proved that our search space graphs for SVP has mag-
nification greater than half. We have implemented the Metropo-
lis algorithm and Hasting’s generalization of the Metropolis al-
gorithm for the SVP. Our results are quite encouraging in all
instances when compared with LLL algorithm.
Keywords: SVP, Search Space, Metropolis Algorithm, Hast-
ing’s Generalization, LLL.

I. Introduction

We investigate in this paper the suitability of using the
Metropolis algorithm to solve the shortest lattice vector prob-
lem, SVP, [1] for short. The Metropolis algorithm [2][3] is
a widely used randomized search heuristic and is often used
in practice to solve combinatorial optimization problems. It
is known that the algorithm performs surprisingly well even
for some provably hard problems; e.g, [3] showed that the
Metropolis algorithm is efficient for random instances of the
graph bisection problem. It is, therefore, of interest to in-
vestigate the performance of the algorithm for SVP, which is
another hard problem of great interest, both from the theoret-
ical and practice considerations.
Van Emde Boas [4] proved in 1981 that SVP is NP-hard for
the∞ norm and mentioned that the same should be true for
any p norm. However, proving hardness in the 2 norm (or in
any finite p norm) was an open problem for a long time.

A breakthrough result by Ajtai[5] in 1998 finally showed
that SVP is NP-hard under randomized reductions. Another
breakthrough by Micciancio[6] in 2001 showed that SVP is
hard to approximate within some constant factor, specifically
for any factor less than

√
2. This was the best result known so

far leaving a huge gap between the
√
2 hardness factor and

the exponential approximation factors achieved by Lenstra
et. al. [7] in 1982, Schnorr [8] in 1988, and Ajtai et. al.
[9] in 2003. At the same time, there are many situations in
practice which require us to get at least a good solution for
SVP, because this is an essential step in most algorithms for
factorizing polynomials.
The structure of the paper is as follows: in the following sec-
tion, we define SVP, in Section 3 we give quick description
of LLL algorithm [7], in Section 4 we define an appropri-
ate search space for our approach to solve SVP, in Section
5 we show how we use our search space to implement the
Metropolis and Hasting’s generalization of the Metropolis al-
gorithm, we also mention why the latter is more appropriate
for our search space. Section 6 provides some experimental
data on how our implementation compares with a standard
implementation of the LLL algorithm. The paper ends with
some concluding remarks.

II. Shortest Vector Problem (SVP)

Definition II.1 (Lattices). Let B = {b1,b2, . . . ,bn} be
a set of linearly independent vectors in m-dimensional Eu-
clidean space Rm where m ≥ n. The set L(B) of all vectors
a1b1 + . . .+ anbn, ai’s varying over integers, is called the
integer lattice, or simply, the lattice with basis B (or gener-
ated by B) and n is the dimension of L(B) . If m = n, we
say that the lattice is of full dimension.
In this paper, we consider only full dimensional lattices. Fur-
thermore, we consider only lattices whose basis vectors have
rational components. In such a case, we can clear the de-
nominators and assume that the each of the basis element is
a vector in Z instead of R.

1

5ISSN 2150-7988 Volume (2012) pp.317-325

MIR Labs, USA

ISSN 2150-7988 Volume (2013) pp.317-325

The basis can be compactly represented as an n × n ma-
trix (also denoted as B) with columns being the basis vec-
tors b1, . . . ,bn as its columns. Then we can write L(B) =
{Ba : a ∈ Zn}
Problem II.1 (Shortest Lattice Vector Problem (SVP)).
Given a lattice L(B) contained in Zn specified by linearly
independent vectors b1, . . . ,bn, the SVP problem is to find
a shortest (in Euclidean norm) non-zero vector of L(B).
Without loss of generality, we consider the decision (and the
search) version of the above problem: Given a a basis B as
above, and a rational numberK > 0, the problem is to decide
if there is non-zero vector v that belongs to L(B) such that
||v|| < K where ||v|| denotes the Euclidean norm of v, and
if the answer is ’yes’, output such a vector.
Clearly, SVP can be solved by logarithmically many appli-
cations of the decision version of the problem. In the next
section we will give quick description of LLL algorithm [7]
since we compare our algorithm with the existing LLL algo-
rithm.

III. LLL Algorithm[7]

The LLL algorithm is a generalization of Gauss’s algorithm
to higher dimension. LLL is the well celebrated and ex-
tensively used polynomial time approximation algorithm for
finding shortest lattice vector. To give quick description of
LLL algorithm, we need the following definitions.
Definition III.1 (Gram-Schmidt orthogonalization process).
Given n linearly independent vectors b1, b2, . . . , bn ∈ Rn,
the Gram-Schmidt orthogonalization of b1, b2, . . . , bn is de-

fined by b̃i = bi −
∑i−1
j=1 µi,j b̃j , where µi,j =

<bi,b̃j>

<b̃j ,b̃j>

Definition III.2 (δ - LLL Reduced Basis [7]). A basis B =
{b1, b2, . . . , bn} ∈ Rn is a δ - LLL Reduced basis (14 < δ <
1) if the following holds :

1. ∀1 ≤ i ≤ n, j < i, µi,j ≤ 1
2 2. ∀1 ≤ i < n, δ

∥∥∥b̃i∥∥∥2 ≤∥∥∥µi+1,ib̃i + b̃i+1

∥∥∥2
Using the above definitions, we can give a description of LLL
algorithm:

Algorithm 1 LLL Algorithm
1: Input : Lattice basis B = {b1, b2, . . . , bn} ∈ Zn

2: Output : δ - LLL reduced basis for L(B)

3: Compute b̃1, . . . , b̃n
4: for i = 2 to n do
5: for j = i− 1 to 1 do
6: bi ← bi − ci,jbj , where ci,j =

⌈
<bi,b̃j>

<b̃j ,b̃j>

⌋
7: if ∃i : δ

∥∥∥b̃i∥∥∥2 > ∥∥∥µi+1,ib̃i + b̃i+1

∥∥∥2 then
8: bi ↔ bi+1

9: Goto Step 3
10: end if
11: output b1, b2, . . . , bn

The LLL algorithm computes a vector which is at most 2
n−1
2

times the shortest vector of the lattice and, is of time com-
plexity of O

(
n6 · log3 α

)
, where α is max1≤i≤n||bi||. Al-

though it does not compute the shortest vector, the output
vector is short enough for applications like polynomial fac-

toring. In the next section we will define search space for
SVP.

IV. Search Space for SVP

A randomized search heuristic algorithm, like the Metropolis
algorithm, for a combinatorial optimization problem works,
given an instance, on a suitably defined search space asso-
ciated with the instance. This space can be considered as a
graph, possibly directed, where each vertex of the graph is
a feasible solution of the instance, and an edge from u to v
shows that from the feasible solution represented by u one
can move to another feasible solution v through some inex-
pensive computation. Each vertex has a cost or a value, the
goal of the search algorithm is to arrive at the vertex which
represents the optimum solution for the instance. For a min-
imization problem, as SVP, the algorithm tries to find the
solution with minimum cost. Usually, the number of feasi-
ble solutions for an problem instance will be exponential in
the size of the instance. The search algorithm, therefore, will
consider the search space only implicitly. At any given it-
eration of the algorithm, it will be at one feasible solution,
the heuristic defines how to select a neighbouring vertex, at
which the algorithm will be at the beginning of the next iter-
ation.
The working of the Metropolis algorithm on an instance can
be viewed as a random walk with a bias on a finite neigh-
bourhood structure of states. Each state of the structure rep-
resents a feasible solution of the optimization problem in-
stance being solved, and the structure has a goal state, the
optimum point, which the algorithm intends to locate. For
minimization problems, as our problem, SVP is, each point
in the structure has a cost, and the goal state is the state with
minimum cost (or, for decision versions, the state with cost
less than or equal to a given specified cost). At any given
step, the algorithm is at one of the points in the search space,
it selects one of the neighbouring points and then transits to
that point. The point is selected probabilistically, the bias en-
sures that the algorithm would reach the goal state eventually
without getting stuck at local minima. For the Metropolis al-
gorithm to run efficiently, it is necessary that the neighbour-
hood structure for an instance to satisfy

1. There should be at most exponentially (in instance size)
many elements in the structure,

2. the diameter of the structure should be bounded above
by a fixed polynomial in the instance size,

3. the set of neighbours of any element should be com-
putable in time polynomial in the instance size, and

4. the cost of any state also should be computable effi-
ciently.

For justifying the way we define our search space for the SVP
[1], we need the following result.
Proposition IV.1. [1] LetB be an n×n non-singular matrix
and let u be a n × 1 vector, ‖ u‖≤ K, K being a non-zero
constant. If there is an integer vector w such that Bw =
u, then the magnitude of every component of w is bounded
above by M , M = (αn)n, where α denotes the largest value

Shenoy, Biswas and Kurur318

amongst the magnitudes of all the elements ofB andK taken
together.
The proof follows easily from the Cramer’s rule, noting that,
first, the determinant of B is 6= 0, and second, if β is the
largest magnitude of all the entries of an n × n matrix Y ,
then detY ≤ (nβ)n

Definition IV.1. [Search Space for SVP [1]] LetB, an n×n
matrix, be the basis of a lattice L and K be a given constant.
Our goal is to look for a lattice vector of norm K or less.
The search space for this instance of the SVP is as follows,
where M is as in Proposition IV.1, and m is a parameter as
fixed in the implementation. (m can be a fixed as a constant
for all instances, or, more usually, it will be a fixed multiple
of n.)

1. [Search space elements] The search space elements
consist of matrices of the form A′ = [A|I], where I
is the n × n identity matrix and A is an n ×m matrix
with all entries of magnitude bounded above by M , M
as in Proposition IV.1.

2. [Definition of neighbourhood] For two elements R′ and
S′, the latter is a neighbour of the former if S can be
obtained from R by any of the following elementary op-
erations:

(a) By swapping two columns of R,
(b) By multiplying a column of R by −1,
(c) By adding a power of 2 multiple of one column

of R′ to another column of R, provided the resul-
tant column satisfies that the magnitude of each of
its components is less than equal to M . In par-
ticular, ri ← r

′

i ± c × r
′

j , (i 6= j, 1 ≤ i ≤
m, 1 ≤ j ≤ m + n, and c, a positive integer,
where c = 20, . . . , 2k, k = n · log (αn). (For
a matrix R, ri denotes its ith column.)(As stated
already, this operation is allowed only if the com-
ponent magnitude condition is satisfied.)

3. [Cost associated with a search space element] For an
element A′ = [A|I] of the search space, its cost c(A′)
is defined to be t, where t is the norm of that vector
v which has the smallest norm amongst the (m + n)
vectors of B[A|I]. (In other words, by pre-multiplying
the basis matrix B to [A|I], we obtain an n× (m+ n)
matrix; t is the norm of the column vector with least
norm amongst thesem+n column vectors of the matrix
B[A|I].)

The following Proposition follows easily from the the way
we have defined our search space.
Proposition IV.2. [1] Let the n × n matrix B be a basis of
the lattice L, and K is a given constant for the SVP instance.

1. For every element [A|I] of the search space, each of the
(m+n) (column) vectors of the matrix B[A|I] is a vec-
tor of the lattice L. Also, the (m+n) column vectors of
B[A|I] generate the lattice L.

2. If L contains a vector of normK or less, then the search
space for SVP with L,K, will contain an element [A|I]
such that one of the (m+ n) column vectors of B[A|I]
will be of norm K or less. (The search space uses M as
defined in Proposition IV.1.)

The first part is obvious, as every column vector of B[A|I] is
an integer linear combination of the n lattice vectors. Also,
as the vectors of B are contained in the vectors of B[A|I],
therefore,B andB[A|I] both generate the same lattice (Here,
we use the assumption that L is full dimensional). The sec-
ond part of the Proposition also follows easily: we know
from Proposition IV.1 that if there is a lattice vector of norm
K or less, then there is a v, the magnitude of each compo-
nent of v bounded by M , such that the norm of Bv is K or
less. Our search space will have a member [A|I] with A con-
taining v, as the latter can be obtained from the elementary
operations we allow from the identity matrix I .
We now show that our search space definition satisfies the
requirements we stated at the start of the Section. First we
prove that every search space element has at most polynomi-
ally many neighbours.
Theorem IV.1. [1] Let n,m be as in Definition IV.1 and M
be as in Proposition IV.1. The number of neighbours for any
node A

′
in the search space is O(m2 logM). (As logM

is n log (αn), and logα being the number of bits required
to specify the largest magnitude number in the problem in-
stance, we therefore have that every element has at most
polynomially many neighbours.)
The proof follows by noting that a search space element has
at most mC2 neighbours through the first kind of elementary
operation,m through the second kind, and mC2×2 (k + 1)+
2mn (k + 1) of the third kind, where k is O(logM).
Next, our goal is to show that the search space has a polyno-
mially bounded diameter.
Theorem IV.2. [1] There is an O(mn logM)-length path
between the elements A′ = [A|I] and B′ = [B|I] (and vice
versa), where A′ and B′ are any two elements in the search
space.

Proof. Let us first show how we can replace the ith column
ai of A with bi, the ith column of B. In the first stage, us-
ing elementary operations, we get ej in place of ai, where
ej denote jth column of the Identity matrix I (Since A has
m ≥ n columns and m is multiple of n, i = qn + j for
some q ∈ Z, where 1 ≤ j ≤ n, j = n if i = qn). We
have to set jth component of ai to 1 and other component
of ai to 0. Suppose that the rth component of ai was x. Let
x = c0x0+ . . .+ckxk, where each ci is 2i and each xi is 0 or
1, and k isO(logM). For r 6= j we set the rth component to
zero by performing the elementary operations ai ← ai−xer
in atmost k + 1 elementary operation. For r = j we set
the component to one by performing the elementary opera-
tion ai ← ai − (x − 1)ej in at most (k + 1) elementary
operations, since x − 1 = y = 20y0 + . . . + 2kyk, where
each yt is 0 or 1, 0 ≤ t ≤ k. So total number of elemen-
tary operations to set each component of ai is bounded by
n(k + 1) elementary operation. Therefore the total number
of elementary operations to set ai for 1 ≤ i ≤ m is bounded
by mn(k + 1). Now in the second stage, using elementary
operations, we get bi in place of ai = ej . Let rth component
of bi be z = 20z0 + . . . + 2kzk, where each zt is 0 or 1,
0 ≤ t ≤ k. If r = j by performing the elementary operation
ai ← ai + (z − 1)ej , we can set jth component of ai to jth

component of bi in atmost k + 1 elementary operations. For
r 6= j we set the rth component of ai to rth component of
bi by performing elementary operation ai ← ai + zer. This

Search Graph Formulation and Hasting’s Generalization of Metropolis Algorithm For Solving SVP 319

implies that we can set ai to bi in atmost n(k+1) elementary
operations. Hence we can set ai to bi for all 1 ≤ i ≤ m in
atmost nm(k + 1) elementary operations. Therefore we can
set A to B in atmost 2nm(k+ 1) elementary operations. i.e.
O(mn logM). Hence the proof.

We shall see in Section VI that the Metropolis algorithm for
SVP seems to perform surprisingly well. We provide below
a result which to a certain extent explains this good perfor-
mance, we prove that our serach graphs have large magnifi-
cations. Let G be a graph, G = (V,E). For any subset A
of V , let E(A,A) denote the set of edges from A to V − A.
The magnification µ(G) of G is defined as

µ(G) = min
0<|A|≤|V |/2

|E(A,A)|
|A|

We now show that our search space graphs for SVP have
magnifications at least half.
Theorem IV.3. A search space graph for SVP has magnifi-
cation ≥ 1

2

Proof. For any two verices A′, B′ of the search graph let us
define the canonical path [10][11] from A′ to B′ to be the
path as defined in the proof of Theorem IV.2. We prove that
the number of canonical paths that pass through any given
transition (i.e., edge) is bounded by the total number of states
(i.e N) in the search space. Let C ′ = [C|I] and D′ = [D|I]
be two adjacent vertices in a canonical path, and consider the
transition (edge) taken in the path to go from C ′ to D′. Such
a transition adds or subtracts a power of 2 to a component of
a vector in C. For example, let
C = d1, d2, . . . dk−1 d1k, 0 . . . 0 ck+1 . . . cm and

D = d1, d2, . . . , dk−1 d1k, d
2
k, 0 . . . 0 ck+1 . . . cm

where dik = 2j for some j = 0, 1, . . . , k. Here we are us-
ing the an elementary operation of the kind that adds a power
of two times an identity matrix column to a column of C.
Clearly, the number of canonical paths that share this tran-
sition is less than equal to the number of ways to choose
d1, . . . , dk × the number of ways to choose ck+1, . . . , cm,
which is equal to the number of ways to choose a sequence
of m columns,
in other words, the total number of states N.
Hence, number of canonical paths that pass through any edge
is bounded by the total number of states in the search space.
For a subset S of vertices, let E(S, S) denote the edges go-
ing out of S to the rest of the vertices, i,e., S. Let S be
the subset of states which defines µ(G), for our search space
graph G. Therefore, µ(G) = E(S,S)

|S| . However, |S| × |S|
canonical paths go from S to |S|. Each of these paths
passes through one of the edges of E(S, S). As no edge
can have more than N canonical paths passing through it,
N × E(S, S) ≥ |S| × |S|.
As |S′ | ≥ N

2 , N × E(S, S) ≥ |S| × N
2 ,

which implies E(S,S)
|S| ≥

1
2 . Therefore µ(M) ≥ 1

2 .

The significance of the above result is as follows. Sanyal,
Raja, and Biswas proved in [2] that a Markov chain fam-
ily used for an optimization problem will be able to find
the optimum with high probability within a number of steps
bounded by a fixed polynomial in the input instance size if

and only if each chain in the family is rapidly mixing[10][11]
and the stationary probability of each goal state is high, i.e.,
larger than an inverse polynomial in instance size. Now,
it is well known that a time reversible chain (as in the
case of the Metropolis) is rapidly mixing iff it has high
conductance[10][11], that is, from every subset S of vertices,
where the probability of being in a state in S in the stationary
distribution being no more than half, there is a large ergodic
flow out of S. Now, we have shown in the above result that
there will be a large number of edges going out of sets of ver-
tices. It is, therefore, likely that these large number of edges
together will also carry a large ergodic flow. If that is the
case for an instance, the Markov chain for the instance will
be rapidly mixing.
We have proved that the entries of A is bounded by O (αnn)
and Theorem IV.2 suggest that there exists a path using which
we can reach any node in the search space. Hence our search
space Definition IV.1 ensures that entries of intermediate ma-
trices will not grow exponentially and we can also reach from
one state to another with in polynomial number of steps. We
are always interested in finding shortest non zero vector in
the lattice but there are chances that we may get zero vector
while applying the elementary operations defined in Defini-
tion IV.1 on the matrix A

′
= [A|I]. To avoid this, we can

define a cost of zero vector as infinity which prevents from
moving to such neighbours due to its very high cost. Let us
now define the Metropolis algorithm for SVP.

V. Metropolis Algorithm

The pseudo-code of the Metropolis algorithm is given below
(Algorithm 2). As mentioned before, the metropolis algo-
rithm is the execution of a Markov process. It is therefore
completely defined once the transition probabilities are de-
fined.
Consider a search space and neighbourhood structures as de-
fined in Definition IV.1. Observe that only one row of current
solution will be changed by the elementary operations per-
formed on it. The cost function can be modified as follows:
Let R

′
be the current solution and S

′
be the new solution. S

′

is obtained from R
′

by applying one of the elementary trans-
formation as defined in the Definition IV.1 to the rth column
of R. Hence, the cost function c(R

′
) is the Euclidian norm

of the rth column vector of B ∗R and c(S
′
) is the Euclidian

norm of the rth column vector of B ∗ S.
The Metropolis algorithm on instance R

′
= [R|I] runs a

Markov chain XR
′

= (XR
′

1 , XR
′

2 , . . .), using the temper-
ature parameter T . The state space of the chain is the set SR

′

of the feasible solutions of R
′
. Let d denote the degree of

the node in a search graph where d = O(m2 · logM) as in
Theorem IV.1. Let R

′
and S

′
denote any two feasible solu-

tions and neighbourhood of R
′

is denoted by N(R
′
). Then

the transition probabilities are as follows:

qR′S′ =


0, if R

′ 6= S
′

& S
′
/∈ N(R

′
)

e
−
(
c(S
′
)−c(R

′
)

)
/T

d , if c(S
′
) > c(R

′
)&R

′ ∈ N(R
′
)

1
d , if c(R

′
) ≥ c(S′) & S

′ ∈ N(R
′
)

1−
∑
J′ 6=R′ qJ′R′ , if R

′
= S

′

The complete algorithm (Algorithm 2) is given below [1].

Shenoy, Biswas and Kurur320

Algorithm 2 Metropolis Algorithm
1: Input : B ← Basis for the lattice L and a rational num-

ber K
2: Output : Matrix R

′
such that B ∗R′ contains a vector v

with ||v|| ≤ K.
3: Let I ← n× n Identity matrix. Let R

′
= [R|I] be the

starting state in the search space as in Definition IV.1
and c(R

′
) denote cost of R

′
as defined in the beginning

of this section.
4: Set BestNorm = c(R

′
)

5: while BestNorm > K do
6: Select any one of the neighbour S

′
of R

′
uniformly

at random by performing one of the elementary
operation as defined in Definition IV.1

7: if BestNorm > c(S
′
) then

8: BestNorm = c(S
′
)

9: end if
10: Set R

′
= S

′
with probability

α = min

(
e−c(S

′
)/T

e−c(R
′)/T

, 1

)

11: end while

Hasting’s Generalization of Metropolis Algo-
rithm

The way the Metropolis algorithm decides about moving
from the current state si to a state in the neighbourhood can
be seen as a two stage process: first, choose a neighbour sj
uniformly at random (the proposal stage), and then, with a
probability α which depends upon the relative costs of the
solutions associated with sj and si, move to sj or remain at
si (the acceptance stage).
In our case, the neighbours of a state [A|I] are [A′|I]’s where
A′ is obtained by performing an elementary operation us-
ing the vectors in A and I . Some of the elementary oper-
ations represent what we call long jumps because a vector
v is replaced by another u where there is a large difference
in the norms of v and u. This happens when v is replaced
by v ± cw when the constant c is large. It is desirable to
have a control on how extensively our algorithm will make
use of such long jumps. This is not possible in the stan-
dard Metropolis algorithm as the proposal stage will chose
a neighbour uniformly at random.
To overcome this problem, we make use of the Hasting’s gen-
eralization [12][1] of the Metropolis algorithm. In this gener-
alization, we can use any probability to select the neighbour
of a state in the proposal stage. Let S be any state space. First
we define a Markov chain M1 on S. The transition probabil-
ities of M are as follows. Let qxz denote the probability by
which we select a neighbour z when the current state is x.
Let x be a state. If y1, . . . , ynx

be neighbours the neighbours
of x. Then

qxz =

 0 if x 6= z and z /∈ N(x)
θ if x = z,
ri if z = yi

,

where the values ri can be chosen appropriately depending
on how much we want to invest on each of the strategy.

The Hasting’s generalized metropolis algorithm M2 runs on
the same state space but has a different transition probability:
Suppose the chain M2 is at a state the state x at some step.
Then

1. With probability qxz , M2 selects a state z in the neigh-
bourhood.

2. If z = x then the next state of M2 is x.

3. If z = yi, we first compute α defined as

α = min

(
e−c(yi)/T · qyix
e−c(x)/T · qxyi

, 1

)
Here, for any state z, c(z) represents the cost of the can-
didate solution of z and T is a fixed temperature param-
eter.

4. We move to yi with probability α else we remain in the
present state x.

It can be verified easily that the chain M2 is time-reversible
and then its stationary distribution, the probability of x, πx is
given by:

πx =
e−c(x)/T

Z
,

where Z is the normalizing factor
∑
i πi. Clearly, when M2

is in x, the next state is either x itself, or one of its neighbours
yi. Let πyi

qyix
πxqxyi

< 1. Then pxyi , the probability of moving

from x to yi in M2 is given by pxyi = qxyi ×
πyi

qyix
πxqxyi

. We
now verify that πxpxyi = πyipyix.
LHS = πxpxyi = πxqxyi

πyi
qyix

πxqxyi
= πyiqyix

For RHS, note that α = 1 Therefore pyix = qyix. Hence,
πyipyix = πyiqyix.
Thus, the time reversibility for M2 holds and its stationary
distribution probability for any x is πx.
The chain M2 is the Hasting’s generalization. This chain has
the same stationary distribution as the usual Metropolis algo-
rithm, but has the flexibility of fine tuning the probability of
choosing a neighbour to reflect the structure of the problem
at hand. In our implementation, we shall keep qxyi the same
as qyix. The detailed algorithm (Algorithm 3) is given below
[1]. In the next section we will compare the results of our
algorithm with that of LLL algorithm.

VI. Results

In this section we describe how our algorithm compares with
the celebrated LLL [7] algorithm on benchmark instances
SVPs’. We have tested our algorithm for basis B with differ-
ent dimension n. We implemented our algorithm using NTL-
5.5.2 [13] and compared the result with NTL’s in built opti-
mized function LLL. We now describe the benchmark lat-
tices that we ran this algorithm on. A class of SVP instances
are generated using the techniques developed by Richard
Lindner and Michael Schneider [14]. They have given sam-
ple bases for Modular, Random, ntru, SWIFT and Dual Mod-
ular lattices of dimension 10. We have tested our code for
all these instances and found that our algorithm works faster
and gives shorter lattice vector when compared to LLL. The
tested results are given in the Table 1 and Table 2

Search Graph Formulation and Hasting’s Generalization of Metropolis Algorithm For Solving SVP 321

Algorithm 3 Hasting’s Generalization
1: Input : B ← Basis for the lattice L and a rational num-

ber K
2: Output : Matrix R

′
such that B ∗R′ contains a vector v

with ||v|| ≤ K.
3: Let I ← n× n Identity matrix. Let R

′
= [R|I] be the

starting state in the search space as in Definition IV.1
and c(R

′
) denote cost of R

′
as defined in the beginning

of this section. Let d denote total number of neighbours
as in Theorem IV.1

4: Set BestNorm = c(R
′
)

5: while BestNorm > K do
6: Select any one of the neighbour S

′
of R

′
by perform-

ing one of the elementary operations defined below.

• Swap two columns of R with probability
mC2

d ,

• Multiply a column of R by −1 with probability
m
d

• Add a power of 2 times a column of R′ to an-
other column of R i.e. in particular, ri ← r

′

i ±
c×r′j , (i 6= j, 1 ≤ i ≤ m, 1 ≤ j ≤ m+n, where
c = 20, . . . , 2k, k = n · log (αn)) with probabil-
ity d−mC2−m

d ·Pi, where Pi denote probability of
selecting the value of c = 2i and

∑k
i=0 Pi = 1.

[We can use more than one probability distribu-
tion to select values for c. In our implementation
we have selected two probability distributions
Pi =

1
k+1 andQi = 2(k+1−i)/(k+1)(k+2) to

select values for c. We will keep on changing our
selection probability distribution with Pi and Qi
for every selected number of steps(500 steps).]

7: if BestNorm > c(S
′
) then

8: BestNorm = c(S
′
)

9: end if
10: Set R

′
= S

′
with probability

α = min

(
e−c(S

′
)/T

e−c(R
′)/T

, 1

)
11: end while

Figure. 1: Type of Lattice Vs Time Taken by LLL and Our
Algorithm

Figure. 2: Type of Lattice Vs Best Norm found by LLL and
Our Algorithm

Figure. 3: Type of Lattice Vs Number of steps taken by LLL
and Our Algorithm

Shenoy, Biswas and Kurur322

Table 1: Results obtained by applying LLL(Data taken from
[14][1])

Lattice Dim. Best Norm CPU Time Input No. of

Type n Found in seconds size Steps

in bits Taken

Swift 8 4.242 0.04 8 58

NTRU 8 4.358 0 8 64

Modular 10 2.449 0.04 8 126

Dual 10 3.6055 0.004 8 122

Modular

Random 10 2.828 0.004 8 132

Table 2: Results obtained by applying Hasting’s Generaliza-
tion (Data taken from [14][1])

Lattice Dim. Best Norm CPU Time Input No. of

Type n Found in seconds size Steps

in bits Taken

Swift 8 4.12 0.002 8 33

NTRU 8 3.6 0.002 8 1

Modular 10 2.449 0.026 8 41

Dual 10 3.6 0.002 8 193

Modular

Random 10 2.6 0.01 8 14

The Fig. 1 shows that our algorithm takes less time when
compared to LLL. Fig. 2 shows that Our algorithm gives
shorter vector than LLL algorithm for the given instances.
Fig 3 shows that the number of steps taken by our algorithm
is less than LLL algorithm for most of the given instances.
Based on the result by Ajtai [15], Johannes Buchmann,
Richard Lindner, Markus Ruckert and Michael Schneider
[16] [17] constructed a family of lattices for which finding
the short vector implies being able to solve difficult compu-
tational problems in all lattices of a certain smaller dimen-
sion. For completeness we give a quick description of these
family.
Definition VI.1. Let n be any positive integer greater than
50, c1, c2 be any two positive real numbers such that c1 > 2
and c2 ≤ c1 ln 2− ln 2

50·ln 50 . Letm = c1 ·n · lnn and q = nc2 .
For a matrix X ∈ Zn×m, with column vectors x1, . . . , xm,
let

L(c1, c2, n,X) =

{
(v1, . . . , vm) ∈ Zm|

m∑
i=1

vixi ≡ 0 mod q

}

All lattices in the set L(c1, c2, n, .) = {L(c1, c2, n,X)|X ∈
Zn×mq } are of dimensionm and the family of lattices L is the
set of all L(c1, c2, n, .)
They[16][17] also proved that all lattices in L(c1, c2, n, .) of
the family L contain a vector with Euclidean norm less than√
m and it is hard to find such vector. The challenge is to

try different means to find a short vector. The Challenge is
defined in the following definition:
Definition VI.2 (Lattice Challenge:). Given lattice basis of
lattice Lm, together with a norm bound ν. Initially set ν =
d
√
me. The goal is to find a vector v ∈ Lm, with ||v||2 ≤ ν.

Each solution v to the challenge decreases ν to ||v||2.

Table 3: Results obtained by applying LLL (Data taken from
[16][17][1]: Toy Challenge)

Dimension Best Norm CPU Time Input size No. of

n Found in seconds in bits Steps

Taken

10 2.49 0 8 78

15 1234.6 0.016 150 2183

20 3 0.27 8 320

25 1.73 0.008 8 373

30 4.123 0.004 8 364

50 20.49 0.11 100 3920

Table 4: Results obtained by applying Hasting’s Generaliza-
tion (Data taken from [16][17][1]: Toy Challenge)

Dimension Best Norm CPU Time Input size Number

n Found in seconds in bits of steps

10 2.23 0 8 18

15 1147.2 185.6 150 123567

20 2.83 0.05 8 640

25 1.73 -1.41624e-18 8 1

30 3.464 0.001 8 10

50 8.66 294.2 100 256789

We have tested our algorithm for toy challenges(i.e. with
m ≤ 50) and the comparison results with LLL is listed in
Table 3 and 4.
An important step in the LLL algorithm is the computation
of the Gram-Schmidt orthogonalisation of the basis in hand.
In practical implementations, this computation is done using
floating point numbers instead of multiprecision arithmetic to
speed up computation. We apply a similar technique here. At
each step our transition probabilities are based on the value
of the objective function, which is the length of the smallest
vector in the current solution. We compute this length using
floating point arithmetic instead of the full multiprecission
arithmetic.
Our results are very encouraging. For all the examples con-
sidered, we found that our algorithm performs well either in
value or in time and often in both than LLL. When the num-
ber of bits used to represent integer value is more than 100
bits we found that LLL is more faster than our algorithm but
our algorithm gives shorter vector than LLL.
The Fig. 4 shows that our algorithm takes less time than
LLL for some instances. Fig. 5 shows that Our algorithm
gives shorter vector than LLL algorithm for the given in-
stances. Fig. 6 shows that for some instances our algorithm
takes less number of steps than LLL but when number of
bits used to represent input values is greater than 100 bits
LLL takes less number of steps than our algorithm.

VII. Conclusion

In this paper we have defined the search space for svp and
also considered the use of the Metropolis algorithm and its
generalization due to Hastings, for solving SVP, a well-
known, hard combinatorial optimization problem. To the
best of our knowledge, this is the first such attempt. Our

Search Graph Formulation and Hasting’s Generalization of Metropolis Algorithm For Solving SVP 323

Figure. 4: Number of Bits, Dimension Vs Time Taken by
LLL and Our Algorithm

Figure. 5: Dimension Vs Best Norm found by LLL and Our
Algorithm

Figure. 6: Dimension Vs Number of steps taken by LLL and
Our Algorithm

approach rests on an appropriate definition of a search space
for the problem, which can be used for some other classes of
evolutionary algorithms as well, e.g., genetic algorithm and
the go-with-the-winner algorithm. We have also proved that
our Search Space graph for SVP has magnification greater
than half. We have compared the performance of our imple-
mentation with that of a standard implementation of the LLL
algorithm; and the results we have obtained are fairly encour-
aging. Given this experience, it is worth while to explore if
it can be shown that our approach is efficient for random in-
stances of SVP.

Acknowledgment

This work was carried out by Ajitha Shenoy K B in the De-
partment of Computer Science and Engineering, Indian In-
stitute of Technology (IIT), Kanpur, India. Ajitha Shenoy K
B would like to thank Research-I foundation, Department of
Computer Science and Engineering, Indian Institute of Tech-
nology (IIT), Kanpur, India and Manipal University, Mani-
pal, India for their support in pursuing this research work.

References

[1] Ajitha Shenoy K. B. and Somenath Biswas and Piyush P Kurur,
“Metropolis algorithm for solving shortest lattice vector
problem (svp),” in Proceedings of 11th international
conference on Hybrid Intelligent Systems, Melacca,
Malaysia, 2011, pp. 442–447.

[2] Swagato Sanyal and S. Raja and Somenath Biswas,
“Necessary and sufficient conditions for success of the
metropolis algorithm for optimization,” in Proceedings
of the tenth ACM GECCO’10, Portland, OR, USA,
2010, pp. 1417–1424.

[3] Ted Carson, “Emperical and analytic approaches to un-
derstanding local search heuristics,” in PhD Thesis,
University of California, San Diego, 2001.

[4] P. Van Emde Boas, “Another np-complete problem and
the complexity of computing short vector in a lattice,”
in Tech. rep 8104, University of Amsterdam, Depart-
ment of Mathematics, Netherlands, 1981.

[5] M. Ajtai, “The shortest vector problem in l2 is np-hard
for randomized reductions,” in STOC 98: Proceedings
of the 30th Annual ACM Symposium on Theory of Com-
puting, New York, NY, USA, 1998, pp. 10–19.

[6] D. Micciancio, “The shortest vector in a lattice is hard
to approximate to within some constant,” SIAM Journal
of Computing, vol. 30(6), pp. 2008–2035, 2001.

[7] A.K. Lenstra and H. W. L. Jr. and L. Lovasz, “Factor-
ing polynomials with rational coefficients,” Mathema-
tische Annalen, vol. 261(4), pp. 515–534, 1982.

[8] C. Schnorr, “A more efficient algorithm for lattice basis
reduction,” Journal of Algorithms, vol. 9(1), pp. 47–62,
1988.

Shenoy, Biswas and Kurur324

[9] M. Ajtai, “The worst-case behavior of schnorr’s algo-
rithm approximating the shortest nonzero vector in a
lattice,” in STOC-03: Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, ACM Press,
2003, pp. 396–406.

[10] Mark Jerum and Alistair Sinclair, “Approximating the
permanent,” SIAM Journal of Computing, vol. 18, pp.
1149–1178, 1989.

[11] Jerum and Alistair Sinclair, “conductance and rapid
mixing of property for markov chain : The approxima-
tion of the permanent resolved,” in Proceedings of the
symposym on Theory of Computer Science, 1998.

[12] Michael Mitzenmacher and Eli Upfal, Probability and
Computing: Randomized Algorithms and Probabilis-
tic Analysis. Page 269: Cambridge University Press,
2005.

[13] Victor Shoup, “http://www.shoup.net/ntl/.”

[14] Sage reference v4.7, “Cryptography,” www.sagemath.
org/doc/reference/sage/crypto/lattice.html.

[15] M. Ajtai, “Generating hard instances of lattice prob-
lems (extended abstract),” in Proceedings of the twenty-
eighth annual ACM symposium on Theory of comput-
ing, STOC’96, ACM, New York, NY, USA, 1996.

[16] J. Buchmann, R. Lindner, M. Ruckert, and M. Schnei-
der, “Explicit hard instances of the shortest vector prob-
lem,” in PQ Crypto, 2nd Internation Workshop on Post
Quantum Cryptography, LNCS 5299, 2008, pp. 79–94.

[17] TU Darmstadt, “Lattice challenge,” www.
latticechallenge.org.

Author Biographies

Mr. Ajitha Shenoy K B is a research scholar in the De-
partment of Computer Science and Engineering, Indian In-
stitute of Technology (IIT), Kanpur, India. He obtained
M.Tech (Computer and Information Science) degree from
Cochin University of Science and Technology, Cochin, India
in the year 2003. He also obtained MSc(Mathematics) de-
gree from Kannur University, Kannur, India in the year 1999.
He is working as an Assistant Professor in the Department of
MCA, Manipal Institute of Technology, Manipal Universtity,
Manipal, India. His research interests are Randomized Local
search algorithm, Combinatorial Optimization, Image Com-
pression and Graph Algorithms.

Dr. Somenath Biswas is a Professor, Department of Com-
puter Science and Engineering, Indian Institute of Technol-
ogy (IIT), Kanpur, India. His research interests are Random-
ized algorithms, computational biology, computational com-
plexity and logic in computer science.

Dr. Piyush P Kurur is a Associate Professor, Department of
Computer Science and Engineering, Indian Institute of Tech-
nology (IIT), Kanpur, India. His research interests are com-
putational algebra, quantum computation and computational
number theory.

Search Graph Formulation and Hasting’s Generalization of Metropolis Algorithm For Solving SVP 325

