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Abstract: The handwriting is considered among the fastest 
and the most complex motor activities of our biological 
directory. This process also has a side which differentiates it 
from other human behavior as it is a physical manifestation of a 
complex cognitive process. Therefore, the modelling of a 
handwriting system is difficult to implement. Considering the 
complexity of the biological system involved in this process, 
several studies have been proposed in the literature based on 
different approaches. However, the validation results of these 
models remain unsatisfactory and the basic models have been 
improved to approach the reality as much as possible. This 
paper deals with new unconventional handwriting process 
characterization approaches based on the use of soft computing 
techniques namely the exploitation of artificial neural networks 
and more precisely the Radial Basis Function (RBF) neural 
networks. The obtained simulation results show a satisfactory 
agreement between responses of the developed RBF neural 
model and the experimental electromyographic signals (EMG) 
data for various letters and forms then the efficiency of the 
proposed approaches.      
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I. Introduction 
Considering the complexity of the biological handwriting 
process, several researches have been conducted to enrich our 
knowledge on the functioning and organization of this 
biological system. 

At first analysis, Van Der Gon has developed a 
mathematical model characterizing this phenomenon [1].  

An electronic version was then presented by Mc Donald 
[2], who considered the handwriting system as a mass moving 
in a viscous environment. The movement of this mass is 
described by a linear differential second order equation. A 
model governed by a system of two nonlinear differential 

equations of the second order was developed by Yasuhara 
which integrated the effect of the frictional force between the 
pen tip and the writing surface [3]. He presented then the 
identification and the decomposition of a fast writing system. 
In 1987, Edelman and Flash proposed a model based on the 
study of the hand trajectories [4]. Linear modelling approach 
derived from experimental data was proposed by Sano and al 
in 2003 [5].  

Using unconventional approaches, several models were 
proposed for the characterization of the handwriting process. 
These models are based on the concepts of the artificial neural 
networks, fuzzy logic, genetic algorithms… [6], [7] and [8]. 
In this paper, a new model of the handwriting system based on 
the concepts of RBF neural networks is proposed. First of all, 
a description of the experimental approach is presented in 
order to collect experimental measurements for modelling the 
studied process. Then, a direct neuronal model is suggested 
allowing the reproduction of the traces of Arab letters and 
geometric forms starting from experimental measurements of 
electromyographic signals. 

In addition, according to the same principle, an inverse 
neural model is proposed to reconstruct integrated 
electromyographic (IEMG) signals from traces of the pen tip 
along the x-axis and y-axis. Finally, the validation of two 
neural models is made by cascading them in order to validate 
the outputs of each proposed model. 

II. Experimental Study Description 
During the act of writing, the movements performed can be 
described like displacements in the two-dimensional space of 
the writing plan. In the literature, multiple researches proved 
that the natural component of the graphic trace corresponds to 
space displacements of the pen during the formation of the 
trajectory. In spite of the complexity of the effector system 
including the articulations of the shoulder, the elbow, the 
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wrist and the hand, for a total of forty three muscles, the study 
presented in [3] identified four principal muscles for the hand 
control. In order to characterize this biological process, an 
experimental study carried in [5], has recorded 
electromyograhic signals during the act of writing, figure 1. 

Starting from the surface electrodes used per pair and 
having a common mass, the experimental study allowed 
recording electromyograhic signals during the writing time.  
These signals are obtained from the two most active muscles 
of the forearm, namely the “abductor pollicis longus” and the 
“extensor capri ulnaris” which are the most active and are 
opposed in movement; when one contracts the other extends. 
This experience allowed recording the positions of the pen tip 
in the plan (x, y), the EMG signals, and the pressure P exerted 
by the pen on the writing table.   

 
Figure 1. Experimental assembly [5] 

The experimental study was carried out by eight writers 
aged between twenty-two and twenty-three years old in order 
to obtain a database containing several Arabic letters, namely 
the letter (SIN), the letter (HA) and letter (AYN), and eight 
basic geometrical forms, table1. 

 
Table 1. Arabic letters and geometric forms   

                            written during the experiment                                                                                                                                                                                                                                       

 
 

Figure 2 illustrate an example of the Arabic letter “SIN” 
and figure 3 shows the pen-tip movements according to x and 

y directions in addition to the electromyographic signals 
EMG (CH1) and EMG (CH2) for the same letter. 
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Figure 2. Form of the Arabic letter “SIN” 
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Figure 3. Movements according to x and y 
                  directions and EMG signals of  

   the Arabic letter “SIN” 

Parasites due to noise are one of the most harmful factors to 
acquire as much information as possible of the EMG signal. 
Indeed, the EMG signals recorded during the experimental 
protocol correspond to the spatial-temporal summation of 
action’s potentials emitted during muscle contraction.  
These signals present transitory phenomena or disturbed 
segments and other disturbing signals due to various sources 
such as electromagnetic phenomena of the sector and the 
parasites associated with electrodes and measurement 
uncertainties [9]. This requires the introduction of the 
biomedical signal processing approaches to obtain a signal 
easy to study which is the Integrated Electromyographic 
signal (IEMG).   

After the recovery of the EMG signal’s full wave (Full 
Wave Rectification) calculating the absolute value of the 
EMG signal, the obtained signal is then divided into time 
intervals of fixed duration, and then integrated for each 
interval [5]. An interpolation is finally carried out between 
the various values in order to obtain the curve noted IEMG. 
Figure 4 illustrates an example of the geometric form 
“triangle” (a) and the full-wave rectified EMG and IEMG for 
(CH1) and (CH2) (b), in addition to the wave form of integred 
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electromyographic signals IEMG (CH1) and IEMG (CH2) 
(c).  
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(b) 
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(c) 

Figure 4. The geometric form (triangle) 
(a) Form,  

(b) Full-wave rectified EMG and IEMG,  
(c) Wave form of integred EMG signals (IEMG) 

III. RBF Neural Network Proposed Models 
The functions approximation is one of the main uses of 
multilayer neural networks and namely radial basis function 

neural networks. For a set of input/output data, the problem is 
to find a relationship between these two sets of variables. It is 
a question of developing an approximator of this often 
unknown relation by choosing its structure and by calibrating 
it properly so that it best represents the dependence between 
its inputs and outputs. 

A. Design of artificial neural networks 
One of the most difficult tasks is to design an artificial neural 
network able to solve complex problems, because there is no 
approach that provides an optimized and ideal architecture. 
Indeed, a too large neural network can lead to a good learning 
without obtaining a capacity of generalization, this is due to 
the over fitting problem. On the other hand, a too small neural 
network even optimized may have unsatisfactory results.   

The construction algorithms have as a basic principle to 
start from a small network, usually containing a single 
neuron. The neurons are then added successively one by one 
or in groups to achieve the desired performance [10], [11], 
[12] and [13]. A repetition of the network learning is 
necessary after each neuron add operation since the neural 
network structure changes each time. The convergence of 
such a type of algorithm depends mainly on the universal 
approximation properties of the network structure. 

However, the implementation of this type of algorithm 
remains very expensive in computing times as well as storage 
space if the size of the network reaches important dimensions. 
Two solutions have been proposed in order to reduce the 
learning time: the first, known as the method of allocating 
resources, combines the global adjustment process of the 
network weights with the storage of the obtained structure 
weight at the previous iteration.    

This method is mainly used in the case of the RBF neural 
network construction; it consists in adding a new neuron to 
the network only if the presented vector for the training is 
regarded as sufficiently new; that means: whether the 
effective network output differs from the desired output by an 
amount greater than a certain fixed value. If not, that means: 
if the presented vector is introduced close enough to the center 
of the radial function characterizing a neuron network, the 
weights of this neuron are adjusted to take account of this 
vector [14], [15]. The algorithm RAN "Resource Allocating 
Network" of radial basis function neural network construction 
presents a typical example of this method [16]. The second 
solution consists in adjusting only the weights of the last 
added neuron. This method leads to the assumption that each 
neuron models the function to be approximated over an 
interval. In this case, if learning is performed for this interval, 
it is unnecessary to repeat it with each addition of a new 
neuron. Therefore, only the learning of this last neuron 
weights is necessary, the connection weights of the other 
neurons are maintained fixed. This is repeated until we no 
longer observe significant changes in the performances of the 
network under construction. Such an approach may not lead 
to an optimal set of weights for the entire network. At the end 
of construction, a last learning should generally be made to 
finely adjust the whole of the weights [14], [15]. 

B. Radial basis function neural networks 
The RBF network architecture consists of only three layers, an 
input layer ensuring the transmission of the entries without 
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distortion, a hidden layer which contains the neurons with 
radial basis functions and an output layer which is a simple 
layer containing one neuron with linear function. Each layer 
is completely connected to the next, figure 5.  

Each neuron in the hidden layer performs a nonlinear 
transformation of the input space; these neurons provide the 
calculation of the internal states of activation. The output 
layer computes a linear combination of the neurons’ outputs 
in the hidden layer, balanced by the synaptic weights iw   
connecting the hidden layer neurons to the output layer 
neuron [14]. 

The equation characterizing such a network is described as 
follows:  
 

  01

N
y w x c wi ii i

  


 (1) 

with:  

ic  : The activation function center ,                                                              

 1 2,...,,i niw   : The synaptic weights of the network,                                                                                                      

1 2, ,..., nx x xx     :  The inputs vector,                                                                                                                                             

0w  :  The bias. 

 

 
Figure 5. Structure of RBF neural network 

 x ci  are the activation functions of the hidden 

neurons, defined from IR to IR . The denomination of 
neurons with radial basis functions is relative to the activation 
functions which are symmetrical compared to a point. 

In the literature, there’s whole panoply of radial functions 
among which we can quote, [17]: 

Multi-quadratic kernel    :    2 2v v                           (2) 

Thin plate kernel          :    2 logv v v         (3)  

Gaussian kernel            :  
2

exp 22

vv


 
    

  (4) 

with: v  is the non-negative value of the distance between the 
input vector x and the center of radial basis function ic . 

Among the various radial functions, the Gaussian kernel is 
the most widespread and most commonly used in the design 
of RBF neural networks. The value of its output is more 
important as the entry is closer to the center, whereas it tends 

to zero when the distance between the entry-center becomes 
important. The parameter  can control the speed of the 
function ; it is related to the width of the core factor of 
Gaussian activation function that should be chosen 
judiciously, figure 6.   
 

 
Figure 6. Structure of a Gaussian kernel 

The output of a neuron i with a Gaussian kernel is given by 
the following expression: 
 

  exp 22

x cixi 

 
   
 

 (5) 

The network output is simply a linear combination of the 
outputs of neurons with radial basis functions multiplied by 
the weight of their respective connections, figure 7.  

 

 
Figure 7. Illustration of the output of RBF 

                               neural network 

If the general form of the activation function is chosen, the 
learning of numerical parameters of RBF neural network can 
be achieved. In RBF neural network, the parameters to adjust 
are:  
- The number and positions of the centers ic of each neuron 

Gaussians. 
- The width factors i  of the Gaussians. 

- The synaptic weights Nw  of connections between hidden 

neurons and output neuron. 
Any change in one of these parameters involves directly a 

change in the behavior of the network, hence the need for 
learning [18]. 

C. Direct modelling 
The objective of this part is the modeling of the direct model 
generating a graphic trace, as response to the 
electromyographic signals. The inputs of the proposed model 
are the IEMG1 and IEMG2 signals. Its outputs x and y are 
respectively the positions of the pen tip according to the x-axis 
and y-axis. 

The proposed model is based on an unconventional 
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approach namely RBF neural networks [19]. Its structure is a 
closed loop network with one hidden Gaussian kernels layer. 
The inputs of the neural model are the IEMG signals of the 
two considered muscles, delayed at times: k, k-1, k-2 and k-3 
as well as the x and y positions at: k, k-1, k-2 and k-3. The 
outputs are the x and y position at time k+1, figure 8. 

The direct experimental model was built basing on the 
principle of construction algorithms of artificial neural 
networks. Indeed, starting from a small network with five 
Gaussian kernels neurons, network construction is then 
completed by adding at each step of building five new neurons 
in the hidden layer until reaching the desired performance. 
After several experimental tests, the choice was fixed on the 
addition of five neurons at each new step of construction and 
not less in order to avoid the slow learning and especially the 
overlearning of the network [14], [20], [21] and [22].  

 
Figure 8. Direct neuronal model structure  

         of the handwriting process  

For a given writer, the developed neuronal model 
synthesizes the writing of Arabic letters or simple geometric 
forms. Figures 9, 10, 11 and 12 show the learning 
performance of the neural network developed for example of 
Arabic letters and geometric forms, as well as the response of 
the neuronal model to experimental learnt data.  

ED is the Experimental Data and NMR is the Neural Model 
Response. 
 

 
Figure 9. Learning performance of neural model for the 

                     Arabic letter “SIN”                                                                                                                                                             

 
Figure 10. Responses for learnt data of the Arabic letter  

                     “SIN”                                                                                                                                               

 
Figure 11. Learning performance of neural model for the 

                    geometric form “triangle” 
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Figure 12. Responses for learnt data of the geometric form 

                   “triangle” 

The simulation results show a satisfactory agreement 
between the responses of the developed model and the 
experimental data for various letters and forms.  

As part of the validation of developed neural model, 
unlearnt data were considered for the different neural 
networks relative to forms and letters, figures 13 and 14.   
 

 
Figure 13. Direct neural model responses to the writing of 

                        the unlearned data of the Arabic letter “AYN” 

 
Figure 14. Direct neural model responses to the     writing of 

                   the unlearned data of the geometric form “circle” 

With a few small differences, the simulation results show 
satisfactory correspondences between the experimental data 
and the neural model response in the case of handwritten 
Arabic letters and geometric forms. 

D. Inverse modelling 
The objective of this part is the reconstitution of the 
integrated electromyographic waves parting from pen-tip 
displacements along the x and y-axis. The inputs of the 
proposed model are x and y positions while the outputs are 
the IEMG1 and IEMG2 signals.  
The same construction principle used in the direct neural 
modeling approach is considered to build the inverse model 
[22]. 

The proposed neural network is a closed loop network with 
one hidden Gaussian kernels layer. The inputs of the neural 
model are the x and y positions at: k, k-1, k-2 and k-3 and 
IEMG signals of the two considered muscles, delayed at 
times: k, k -1, k-2 and k-3. The outputs are the IEMG1 and 
IEMG2 waves at time k +1, figure 15. 

 
Figure 15. Inverse neural model structure  

                of the handwriting process  

Considering a given writer, an inverse neural model is 
developed to reproduce the IEMG1 and IEMG2 waves, 
relative to Arabic letters or simple geometric forms. 

Figures 16, 17, 18 and 19 show the learning performance of 
the developed neural network for examples of Arabic letters 
and geometric forms, as well as its response to learnt 
experimental data. 
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Figure 16. Learning performance of neural model for the 
                    Arabic letter “SIN” 

  
(a) 

 
(b) 

Figure 17. Experimental data and neural model response 
                    corresponding to learnt points  of IEMG1 (a)   
                    and IEMG2 (b) for the Arabic letter “SIN” 

 
Figure 18. Learning performance of neural model for the  

                    geometric shape “triangle” 

 
(a) 

          
(b) 

Figure 19. Experimental data and neural model response 
                    corresponding to learnt points  of IEMG1 (a)   
                    and IEMG2 (b) for the geometric shape    
                    “triangle” 
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The responses of the inverse neural model proposed are in 
satisfactory agreement with the experimental data for traces 
of two IEMG signals for the various letters and geometric 
shapes.  

As part of the validation of developed neural model, 
unlearnt data were considered for the different neural 
networks corresponding to letters and forms, figures 20 and 
21.   

 
(a) 

 
(b) 

Figure 20. Inverse neural model responses to the trace of 
                    unlearned data from the IEMG1 (a) and IEMG2    
                    (b) waves of the Arabic letter “SIN” 

 
(a) 

 
(b) 

Figure 21. Inverse neural model responses to the trace of 
                    unlearned data from the IEMG1 (a) and IEMG2    
                    (b) waves of the geometric form “circle” 

With a few small differences, the simulation results show a 
satisfactory agreement between the responses of the 
developed inverse model and the experimental data for the 
traces of two IEMG signals of various letters and geometric 
forms. 

IV. Cascading Proposed Models 
In order to validate the proposed direct and inverse models, 
two cascading procedures are proposed. 

A. Direct model 
The first cascading procedure consists of applying the outputs 
of the direct model for a considered written shape as input to 
the inverse neuronal model already built. The purpose of the 
direct validation model is the reproduction of IEMG1 and 
IEMG2 signals starting from x and y positions obtained from 
the direct model. 

Figures 22 and 23 show the response of the validation 
cascading procedure, corresponding to the Arabic letter 
“AYN” and the simple geometric shape “triangle”.    

VMR is the direct Validation Model Response. 
 

 
(a) 
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(b) 

Figure 22. Responses of the direct validation mode to the  
                    trace of waves IEMG1 (a) and IEMG2 (b) of the                
                    Arabic letter “AYN” 

 
(a) 

 
(b) 

Figure 23. Responses of the direct validation mode to the  
                    trace of waves IEMG1 (a) and IEMG2 (b) of the                
                    geometric shape “triangle” 

Compared to experimental data, the developed cascading 
procedure leads to satisfactory reconstruction of IEMG 

signals obtained from x and y reconstructed positions for 
various Arabic letters and geometric forms. 

B. Inverse model 
In order to validate the experimental inverse neuronal model 
for a given writer a second cascading procedure is proposed. 
The outputs of the inverse neuronal model must be applied as 
inputs to the direct neuronal model already built.  

The purpose of the inverse validation procedure is the 
reconstruction of the x and y traces of forms or handwritten 
letters of the experimental approach starting from IEMG 
signals calculated by inverse neural model.  

Figures 24 and 25 show the response of the validation 
procedure for the inverse neuronal model outputs 
corresponding to the Arabic letter  “HA” and simple 
geometric form “circle”. 
 

 
Figure 24. Responses of the inverse validation model with the 
                    trace of the Arabic letter “HA” 

 

 
Figure 25. Responses of the inverse validation model with the 
                    trace of the geometric form “circle” 

According to the experimental data, the proposed 
cascading procedure permits to well reconstruct x and y 
displacements parting from IEMG signals obtained from 
inverse proposed model. 
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V. Conclusion 
The study of the handwriting process and the development of 
an RBF neural network using electromyographic signals, are 
the main contributions of this paper. 

The proposed experimental approach allowed the 
acquisition of the muscular stimuli and the coordinates of the 
pen tip moving over the writing surface, according to time. 
These experimental measurements constituted a learning 
base for the development of a direct neuronal model and an 
inverse neuronal model for the studied process. The 
simulation results of neural suggested models are satisfactory 
and their validation for various writers was successful. It is 
very interesting to apply the study to the medical field to 
elaborate a system essentially helpful to those who suffer from 
physical handicaps. 
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