
Information Assurance and Security Letters.
ISSN 2150-7996 Volume 2 (2011) pp. 008-012
© MIR Labs, www.mirlabs.net/iasl/index.html

Dynamic Publishers, Inc., USA

A Proposed Model for Vulnerability Analysis Using
Critical Paths

Michael Reeves

mike.reev0@yahoo.com

Abstract: Determining the means by which an attacker may
compromise a given system is the main purpose of vulnerability
assessment. As such, there are several models currently in
place to track vulnerabilities. Some models focus on the
susceptibility of a computer system as a whole where other
models track attack paths through a network. This paper
proposes a model which accomplishes both. The primary focus
of the model is to identify synergistic attacks--consisting of
multiple exploits used in tandem; thereby, resulting in a greater
threat than the individual exploits alone. By using this data, a
critical path can be identified; thus, revealing the exploit
combination posing the greatest risk. Applying the critical path
in conjunction with attack origins expands the diagram to
depict attack vectors. Exploding the diagram by applying the
model to all systems on the network with attack vectors depicts
the entire network as a whole. Information from the model can
then be used to harden both systems and the network,
maximizing the benefits of the added security measures

Keywords: Vulnerability Assessment, Critical Path, Attack

Vectors, Management and Documentation, Standardization.

I. Introduction

As computers are relied upon more frequently for everyday
business transactions they are equally an asset as wells as a
liability. Computer crime, such as data theft or destruction,
has been exponentially on the rise in recent years. Thanks to
the diversity of software typically on computer systems today,
an attacker may utilize any number of means to infiltrate a
system or network. For this reason vulnerability assessment
exists: to identify vulnerabilities, mitigate risks, and if
possible eliminate threats. Unfortunately, vulnerability
assessment methods used today do not approach analysis in
the same manner as an attacker strategizes.

Computer criminals have the distinct advantage of being able
to choose their targets and plan their attacks with a specific
target in mind. Conversely, computer security personnel are
tasked with protecting a network from all possible venues of
attacks. This paper outlines a vulnerability assessment model
that illustrates susceptibility to synergistic attacks, similar to
the process in which an adversary would plan and deploy
attacks. This approach is designed to identify the most
effective mitigation for preventing system compromise.

II. Vulnerability Assessment

Every program has the potential of containing vulnerabilities,
which degrade or circumvent security mechanisms in place.
Vulnerabilities exist due to limitations of protocols in use,
human error in writing program code (both logical and
typographical errors), and improper configuration. Standards
in vulnerability reporting dictates the following information
be tracked for each vulnerability: origin, impact, software
affected, date of discovery, and available vender patch(s)
[1][2][3][4][5]. Additionally tracked information may
include the existence of hot fixes and workarounds, known
exploits, technical details of known exploitation methods, and
a list of files that are created or altered as a result of exploiting
the vulnerability [2]. Several online databases exists that
track vulnerabilities in accordance with and addition to
industry standards (e.g. Secunia, Symantec’s Security Focus,
and McAfee’s Advisories).

A. Data Fields

1) Origin
The origin of a vulnerability identifies where the attacker may
initiate their attack [2][3][4]. The three possible origins are
‘local,’ ‘remote,’ and ‘both.’ ‘Local’ origin attacks can only
be initiated from the vulnerable system itself. ‘Remote’ origin
attacks are initiated from a different system via a network
connection. A vulnerability which can be exploited either
through the vulnerable system or from a remote system has an
attack origin of ‘both.’

2) Impact
The impact of a vulnerability defines potential results of

exploitation [2][3][4]. There are five different impact types:
‘denial of service,’ ‘information release,’ ‘privilege
escalation,’ ‘code execution,’ and ‘system compromise.’
‘Denial of service’ deprives legitimate users access to
resources and services. ‘Information release’ discloses
information that would not otherwise be available. ‘Privilege
escalation’ elevates a user’s rights and access to the system
beyond the previously existing confines. ‘Code execution’
allows rouge code to be run. ‘System compromise’ is the
outright unauthorized access to the computer. As defined
here, ‘system compromise’ does not necessarily entail
administrator-level compromise. A vulnerability is not
limited to a single impact and may have multiple (or possibly
all) impact types.

A Proposed Model for Vulnerability Analysis Using Critical Paths

9

3) Software affected

The software affected defines the specific product and version
[2][3][4]. Affected software is identified by vender, product
name, and version. Some vulnerabilities may affect multiple
products from numerous venders. In addition, some versions
of a product may be unaffected while other versions are
susceptible.

4) Date of discovery
The date which the vulnerability was discovered is generally
tracked for statistical reasons [2][3][4]. The longer a
vulnerability is unaddressed the more likely an exploit will be
created before a resolution is available [6].

5) Vender Patches

Vender patches identify all available software updates that are
designed to resolve specific vulnerabilities [2][3]. Once a
patch has been applied, the software is no longer considered
susceptible to the vulnerability.

6) Hot fixes and Workarounds
Hot fixes and workarounds resolve vulnerability susceptibility
through means other than a vender patch [2][3]. These may
include the installation of additional software, the removal of
software, or configuration changes which once implemented
negates the vulnerability. Hot fixes and workarounds
effectively serve the same role as vender-provided patches but
may not always be an acceptable solution due to operational
requirements.

7) Exploits

Exploits are known or proven methods to utilizing a
vulnerability [2]. They may be automated or implemented
manually. In the case of vulnerability assessment reports, the
exploitation tools (and source code if available) or manual
procedures are identified and documented.

8) Exploitation Technical Details

The details of an exploit identify information above and
beyond the specific code or procedure used in the exploit
[2][3][4]. This information identifies the technical
interworking of the known exploit and how the system is
affected.

9) Altered Files

Where the exploitation details identify how the exploit works
and the specific effects on the system, all residual changes
may be used to identify that an exploit was in fact used [2][3].
Information regarding the created and altered files can assist
in identifying successful vulnerability exploitation attacks;
simultaneously identifying which specific exploit was
employed and how to revert the system to a previous state
without the need of full disaster recovery. This information is
most useful above and beyond the realm of vulnerability
assessment, such as during incident response.

B. Using Assessments

Traditionally, vulnerability assessment reports are used to

create an evaluation of a program, system, or network as a

whole [7]. Software is evaluated based on the associated

vulnerabilities where as individual system assessments are

based on the sum of the vulnerabilities for all applications

installed. Individual system analysis is commonly automated

using vulnerability assessment software such as Nessus,

Retina, and OpenVAS [6].

Network vulnerability assessment consists of dissecting the

network into protected security zones [7]. These zones are

assessed as a whole through the sum of the vulnerabilities of

the systems within the zone. The connections between

security zones are analyzed, totaling all vulnerabilities which

can permit an attacker to traverse from one zone to another.

With network-based vulnerability assessment, the overall

depiction of the zones and their interconnections acts as the

overall assessment of the network.

III. Critical Path Analysis

Critical path analysis is used in project management to
identify the tasks that if delayed would in turn elongate the
entire project [8][9]. Critical path analysis is possible through
identification of task requirements and creating a
chronological sequence of tasks. As a result, tasks which can
be performed (or in-progress) concurrently are also identified.
The order-of-operations information is then diagramed,
depicting the time and resource requirements of each task.
The connecting lines between sequential tasks show the paths
to project completion.

The critical path is the longest path from project start to
completion, because each task must be accomplished in the
diagrammed sequence [8][9]. By identifying the critical path,
project managers are able to readjust resources, therefore
shortening the time required to complete tasks on the critical
path; thus, reducing the time needed to complete the project.
Once resources are reallocated, in-turn changing the length of
the path, the analysis must be re-accomplished as another
path may become the new critical path. Re-analyzing the
critical path stops when resources are optimally distributed,
minimizing the overall project time length.

IV. Proposed Model

This paper proposes a model which views vulnerability
exploitation as tasks of an attacker’s project--outright
compromise of the targeted system. This approach differs
from actual project management in that not all vulnerabilities
must be exploited in order to compromise a system. Where in
project management the critical path is the sequence of tasks
that require the longest time to complete before the project
can be finished, this model’s critical path is the fewest tasks
(which in both cases reveal the minimum time needed for
project completion).

In order to model a system’s critical path toward complete
compromise, all known vulnerabilities of all software on the
system being analyzed must be identified. At a minimum, the
origin, impact, and criticality of each vulnerability must be
tracked. However, this model is designed to identify
synergistic attacks, which is only possible with extensive

Reeves

10

information about the known exploits and their possible use to
satisfy requirements of other vulnerabilities which would
otherwise be unavailable.

As an option, this model can be used to either identify each
individual vulnerability or group automated exploits that are
known to employ vulnerabilities in tandem as a single task.
By using individual vulnerabilities as critical path tasks, more
granularity of the critical path is shown. Clustering
vulnerabilities that are automated reveals the true complexity
of exploitation, possibly presenting a more accurate picture of
the time between initial attack and system
compromise--thanks to the benefits of automation.

A. Diagramming Standard

For standardization purposes in this paper, visualization of
each diagramed vulnerability represents origin, impact, and
criticality. Additionally, each vulnerability is given a unique
number for identification purposes. These diagramming
standards are not based on any existing diagramming
protocol, and can be adjusted as needed (for use and
readability). Attack origin is identified by shapes: a square
(local), a circle (remote), and a square inside a circle (both).
The specific impact(s) of a vulnerability is depicted by the
color outlining each shape: black (denial of service), light
green (information gathering), orange (privilege escalation),
blue (code execution), and red (system compromise).
Multiple impacts are depicted by multiple layers of outlines.

Lastly, the fill color of the shape represents criticality ranging
from green for low, yellow for medium, and red for high.
Exploitation Progression flows from left to right. The far
right of the diagram contains a black diamond representing
potentially successful administrator-level system compromise.
Paths between vulnerabilities and attack vectors are displayed
using a solid black line where the critical path is emphasized
with a bold red line.

B. Model Diagram Creation

Each vulnerability must be reviewed to determine if it can

compromise the system. If no singular vulnerability can

compromise the system outright, any additional requirements

beyond the capabilities of exploiting the vulnerability (in

order to compromise the system) must be identified. These

requirements are compared against the impacts of the

exploitable vulnerabilities on the system. Attacks that can be

used to facilitate the requirements for other exploits are then

connected and arranged in sequence (based on

order-of-operation requirements) and connected to the system

compromise diamond if appropriate. An example diagram is

depicted in Figure 1.

Figure 1. Critical Path Analysis Model for one system.

Each path consisting of more than one vulnerability
illustrates a synergistic attack sequence. The shortest path,
defined previously as the critical path, is the greatest threat to
the systems because it requires the least amount of work for
the attacker.

Hardening the system against exploits of vulnerabilities along
the critical path greatly decreases the risk of system
compromise. Similar to resource reallocation used in critical
path analysis for project management, system hardening may
change the critical path; thus, requiring the analysis to be
re-accomplished (taking into account the new mitigations in
place). This process of analysis, hardening, and reanalysis
continues until no further hardening can be implemented,
either due to technical limitations or operational needs.

C. Expanded Model

Because the proposed model identifies the possible origins of
vulnerability exploits, the model can be expanded to identify
systems with the connectivity necessary to attempt
exploitation of the system being modeled. Of course, any
remote system that cannot connect to the system does not need
to be documented in the expanded model. By identifying
which systems may potentially be used to exploit
vulnerabilities of remote origin, an attack vector is revealed.
The attack vector is used to visualize where an attacker must
either come from or go through (including local access to the
system itself). An example of the expanded model containing
attack vectors for a single system is depicted in Figure 2.

A Proposed Model for Vulnerability Analysis Using Critical Paths

11

Figure 2. Expanded Critical Path Analysis Model for one

system including attack vectors.

Aside from the internal threat, attacks generally originate
from the Internet. Through continuous expansion, this model
can trace attack vectors through the network with the
intention of identifying attack vectors whose ultimate source
is the Internet. In order to identify attack vectors of Internet
origin, each attack vector (and its corresponding remote
system) resulting in system compromise must also be
diagramed. Once diagramed, the process is repeated on the
remote system that can potentially compromise the targeted
system using the attack vector. This outward spiral of system
analysis would continue until no additional remote systems
exist. If one of the systems is directly exploitable from the
Internet, the Internet-initiated threat vector is identified.

Through the expanded diagram, a network view is illustrated.
Additionally, because critical path analysis includes the
attack vectors, it demonstrates the fewest systems necessary to
be used as a pivoting point by an external attacker in order to
eventually compromise the targeted system (the system in
which the model diagramming began).

D. Exploded Model

By applying this expanded model to every system on the
network (or at least every critical system), the diagram can be
exploded, assessing the entire network. By mitigating key
vulnerabilities, not only can critical paths be elongated
(requiring more work for the attacker and potentially
preventing system compromise outright), but total attack
vectors can be elongated or eliminated.

Where the normal and expanded models focus on a single
targeted system, the exploded model focuses on the network
as a whole (or a critical network segment). Like the expanded
model, each system’s critical path and attack vector are
identified. However, due to the web-like nature of networks
and the number of systems being diagramed the exploded

model is exponentially more difficult to analyze than the
simpler expanded model.

E. Maintenance and Upkeep

Though initial implementation is quite time consuming, as
vulnerabilities are mitigated the overall diagram naturally
becomes more simple and manageable. Like all other
vulnerability assessment models, the diagram instantly
becomes outdated as soon as a new vulnerability which is
applicable to the system (or “a system” in the case of the
expanded or exploded model) is discovered. Therefore,
constant maintenance is needed to keep the model up-to-date
and provide an accurate assessment.

V. Model Shortcomings

While this model identifies realistic attacks which can
propagate through a system or network, it is extremely taxing
on the part of the modeler. Assessing a single system may
take days or weeks, depending on the amount of software
installed on the system and the number of vulnerabilities for
the corresponding software. An expanded model would
multiply the time required by the number of remote systems in
the identified attack vectors. Similarly an exploded model
would multiply the time needed by the total number of
systems on the network (or at least by the number of critical
systems, if that is the scope in which the exploded model is
applied).

The time required is not simply for diagramming the model
but also for analysis of synergistic attacks. Additionally,
accurate analysis can only be accomplished by knowledgeable
analysts who are familiar with the vulnerability implications
and corresponding exploitation means. There is no pure
automation capability for this proposed model at this time.
Even if this model were able to be automated with existing
tools, the readability of the model would be decreased in
relation to its scope.

VI. Future Work

Currently no software is available which inherently tracks the
data and metadata necessary to automate diagramming this
model; however, the process can be assisted through a robust
database. Capturing metadata regarding the technical effects
of the vulnerabilities and correlating these results with other
vulnerability prerequisites is the first step in automating this
model. In addition, the database must be able to identify the
security mechanisms in place and how potential hardening
relates to the vulnerability requirements.

In addition to the database back-end, a front-end interface is
needed to present the model. To enhance comprehension, the
model could be broken down into different views of the data.
A drill-down view of the diagram improves visualizing attack
vectors by encapsulating individual system software
vulnerabilities. The drill-down capability also allows for
system-specific vulnerability information to still be accessible.
By contrast, a fully diagrammed view of all vulnerabilities
and corresponding attack vectors is the only way to identify
every vulnerability along the critical path. Of course, filtering

Reeves

12

the full diagram to a specific network segment refines the
scope (like described earlier with the exploded model).

Artificial Intelligence technologies have been proven to
enhance the analytical capabilities of intrusion detection
systems [10][11]. A similar implementation may possibly aid
in the discovery and correlation of synergistic attacks. Given
the correct metadata, logical neural networks can make
correlations that might otherwise become overlooked. Fuzzy
logic may improve the quality of the metadata and subsequent
calculations required.

In the future, a system designed around this model (able to
fully take advantage of the model) could identify critical paths
and attack vectors based on existing or previous knowledge of
vulnerabilities on the system(s) being analyzed. Such a
system may reduce the modeling time exponentially and
identify paths missed by a human administrator (who would
have limited knowledge of all vulnerabilities and exploits
discovered). Increasing the readability of the model and its
context is possible by refining views of the data, such as a
drill-down view and network segment filtering.

References

[1] D. Waltermire, S. Quinn, K. Scarfone, A. Halbardier.
“The Technical Specification for the Security Content
Automateion Protocol (SCAP): SCAP Version 1.2”.
Special Publication 800-126 Revision 2, National
Institue of Standards and Technology, Gaithersburg MD,
2011.

[2] M. Schiffman. “The Common Vulnerability Reporting
Framework”. An Internet Consortium For Advancement
of Security in the Internet (ICASI) Whitepaper, Internet
Consortium for the Advancement of Security in the
Internet, pp. 3-5, 2011.

[3] “Guidelines for Security Vulnerability Reporting and
Response”. Version 2.0, Organization for Internet
Safety, pp. 18-20, 2004.

[4] P. Mell, K. Scarfone. “A Complete Guide to the Common
Vulnerability Scoring System Version 2.0”. Common
Vulnerability Scoring System (v2), National Istitute of
Standards and Technology, Gaithersburg, MD, 2007.

[5] S. Harris. All In One CISSP Exam Guide Fifth Edition,
McGraw Hill, New York, pp. 1133-1138, 2010.

[6] M. Gregg, B. Haines. CASP CompTIA Advanced
Security Practitioner Study Guide, John Wiley & Sons,
Inc., Indianapolis, pp. 193-194, 269, 2012.

[7] R. Trost. Practical Intrusion Analysis, Learning
Solutions, New York, pp. 119-138, 2010.

[8] J. Marchewka. Information Technology Project
Management, John Wiley & Sons, Inc., New Jersey,
pp.185-186, 2010.

[9] “A Guide to the Project Management Body of Knowledge
Third Edition”. ANSI/PMI99-001-2004, Project
Management Institute, Newtown Square, PA, pp.
145-148, 2004.

[10] V. Das, V. Pathack, S. Sharma, Sreevathsan, M.
Shrikanth, G Kumar. “Network Intrusion Detection
System Based on Machine Learning Algorithms”,
International Journal of Computer Science &
Information Technology, II (6), pp. 138-151, 2010.

[11] L. Anyanwu, J. Keengwe, G. Arome. “Dynamically
Self-adapting and Growing Intrusion Detection System”,
International Journal of Multimedia and Ubiquitous
Engineering, V (3), pp. 15-22, 2010.

Author Biography

Michael Reeves Born in Greenbay, Wisconsin, Michael
has worked professionally in the Computer Security field for
over 10 years. In 2011, he earned a Masters of Science
degree in Information Technology (with a specialization in
Information Assurance) from the University of Maryland
University College, located at Adelphi Maryland. Previous,
in 2008 Michael received a Bachelors of Science in
Management of Computer Information Systems from Park
University, located at Parkville Missouri. Additionally, he
holds CISSP, A+, Network+, Security+, and Linux+
certifications.

