
A Survey on Countermeasures against
Man-in-the-browser Attacks

Sampsa Rauti

University of Turku, Finland
sampsa.rauti@utu.fi

Abstract. Man-in-the-browser (MitB) attacks can modify the contents
of a web page or alter data in messages exchanged over the network with-
out the communicating parties (the user and the web service) noticing
anything out of ordinary. In this paper, we present a systematic survey of
countermeasures against man-in-the-browser attacks. While no counter-
measure seems to be completely foolproof (and still usable) against these
attacks, combining a set of solutions and more effectively enforcing them
in real-world systems should greatly mitigate this threat in the future.

Keywords: Man-in-the-browser attacks, Web browser security, Mali-
cious browser extensions

1 Introduction

The man-in-the-browser attack was first discussed in 2005 by Augusto Paes de
Barros in his presentation about emerging backdoor trends. Philipp Gühring
later coined the name man-in-the-browser and provided a more detailed de-
scription of the threat and its countermeasures [13]. Now, over 10 years later,
man-in-the-browser attacks are still a serious threat for many web-based ser-
vices. For example, many security experts have stated that this type of malware
is the most serious threat against online banking.

In man-in-the-browser attacks, the malware can modify the contents of the
displayed web page or alter data in HTTP requests and responses without the
communicating parties (the user and the web service) noticing anything sus-
picious. Real-life examples of man-in-the-browser malware include for instance
Zeus, SpyEye, URLZone, Torpig and Silentbanker [7, 8].

This study surveys the literature related to countermeasures against man-
in-the-browser attacks. In doing so, it can be though as both an extension and
an update to the report written by Gühring back in 2006. To the best of our
knowledge, this paper is also the first systematic survey on man-in-the-browser
attacks and countermeasures proposed against them.

The rest of the paper is structured as follows. Section 2 gives a more detailed
description of the man-in-the-browser attack. Section 3 explains the method of
the study. Section 4 presents the results of the survey: the proposed countermea-
sures against man-in-the-browser attacks found in different literature sources are
explained and their benefits and drawbacks are assessed. Finally, Section 5 con-
tains the discussion and Section 6 concludes the paper.



2 Rauti

2 Man-in-the-browser attacks

Man-in-the-browser (MitB) is a type of software security threat that infects a
web browser by exploiting the security holes in the browser. The malware can
make changes to web pages before they are displayed to the user, modify the
contents of incoming and outgoing communications, and issue additional HTTP
requests [13]. MitB malware can also steal data and send it back to the com-
mand and control server [31]. All this functionality happens stealthily without
the user, the targeted web application or the server noticing anything suspi-
cious. The man-in-the-browser malware can be though of as a dishonest proxy
that operates between the client and the server without these parties observing
anything out of the ordinary. In this sense, MitB is a type of man-in-the-middle
attack, where the adversary manages to capture and possibly modify the mes-
sages between two communicating parties (e.g. a client and a server). However,
instead of intercepting messages in the network, ”the middle” is now located at
the endpoint, that is, the malware resides on the infected client machine.

A MitB attack can proceeds as follows:

1. The malware infects the user’s computer. It may infect the browser (e.g. as
a malicious browser extension) or operate as a malicious program separate
from the browser.

2. The malware waits for the user to navigate to a URL that is on the list of
web pages to be targeted.

3. The malware then monitors the user’s actions, and when the user has logged
into a service and initiates a transaction (e.g. transfers money from a bank
account), the malware intercepts this request and modifies the values (e.g.
alters the receiver’s bank account number through the DOM interface of the
browser).

4. After modification of submitted values, the malware allows the browser to
continue with the operation as usual.

5. The browser sends the request with modified values to the server. The server
accepts the request, because it has no way of knowing this request is not what
the user had originally intended to send in.

6. The server then sends an acknowledgement of a successful transaction to the
browser. For example, in many online banking applications, a confirmation
of the details of a bank transfer is shown to the user.

7. The malicious program or browser extension scans the displayed HTML
page, and changes any details (e.g. the receiver’s bank account number) to
correspond to the original request made by the user. This way, the user has
no way of knowing that the transaction has not gone as intended.

The involved parties (e.g. the user and the bank) have been deceived, and
when they learn that the transaction by the user was in fact modified, it is
usually too late to do anything about it.



A Survey on Countermeasures against Man-in-the-browser Attacks 3

It is noteworthy that many of the traditional authentication mechanisms do
not work against man-in-the-browser attack. The attack modifies the web page
or HTTP requests after authentication has taken place. Thus, the attack takes
place on a level different from authentication mechanisms and simply bypasses
them. Traditional authentication mechanisms such as username-password pairs,
one time pad tokens or smartcards do not protect from MitB. Multifactor au-
thentication is also easily bypassed in many cases.

The same is true for many traditional security mechanisms such as encryption
and firewalls. For example, TLS encryption takes place on the transport layer,
but the malware operates in the browser, where it can get access to unencrypted
data – before it is encrypted and is sent over the network (or, in the case of
incoming data, after it is received and decrypted). Stealthiness and immunity
to almost all traditional security measures is what makes man-in-the-browser
attacks so dangerous.

There are several methods to implement the man-in the browser attack.
Browser extensions (or user scripts) can be used to modify web pages and values
in their data fields (by using Document Object Model API), grab information in
the forms, and to intercept and alter HTTP request and responses [19, 32]. The
web page and data can also be edited on lower level, for instance by setting up
hooks in the network libraries [26]. In some cases, man-in-the-browser attacks can
also be carried out by poisoning the browser cache [14]. Some countermeasures
discussed in Section 4 work for some of these implementations of MitB attacks,
and some of them work in all cases.

3 The Method of the Study

The study was implemented as a systematic survey. Relevant papers were searched
from the Scopus database. We used the search term ”man-in-the-browser” to
search from publication titles and abstracts. Also, the all the publications in
the references of these papers were included in the initial set of publications.
This helped us to get a more extensive collection of related papers and also to
include a few relevant white papers from software security vendors that would
have otherwise been missed.

The papers were then assessed first based on their titles, then based on the
abstract and finally based on the full paper. Papers that presented either prac-
tical or conceptual countermeasures against man-in-the-browser attacks were
included in the study. Papers that did not discuss solutions to thwart MitB
attacks were excluded.

4 Results: Countermeasures against MitB

Monitoring browser extensions Traditionally, web browser extensions, used
to add extra functionality to the browser, have been a very powerful and stealthy
way to implement man-in-the-browser functionality. While modern browsers
(such as Chrome) have recently been trying to add mechanisms to enforce more



4 Rauti

fine grained extension permissions and restrict what browser extensions are al-
lowed to do, malicious extensions are still a significant problem for privacy and
security today.

Ter Louw et al. [27] use extension integrity checking and discuss monitoring
the runtime behavior of extensions to solve the problem. Marouf and Shehab [17]
present a framework for browser extension permission management in Chrome,
while Wang et al. discuss access-control of extensions for Firefox [33]. Guha et al.
[12] propose a framework for specifying fine-grained access control and dataflow
policies for extensions. Liu et al. [16] propose micro-privilege management for
extensions and different sensitive levels for DOM (Document Object Model)
elements on a web page.

Restricting the power of extensions is an effective countermeasure for man-
in-the-browser attacks that have been implemented by the means of browser
extensions, and simple policies such as turning the extensions off completely on
certain critical web pages such as online banks can be very successful in fraud
prevention. However, monitoring extensions and restricting their permissions
does not help of the man-in-the-browser malware has been implemented with
some other method such as setting up hooks in the network libraries.

Out-of-band verification One of the most effective ways to prevent man-in-
the-browser attacks is out-of-band (OOB) verification. In other words, a second
channel separate from the connection between the client and server is created
and the intended transaction (such as money transfer) is verified using this secure
channel. For example, the user can receive a verification message via SMS and can
verify that the transaction has not been tampered with [8, 35]. However, NIST
(the US National Institute of Standards and Technology) has stated in 2016
that it no longer considers this practice safe: ”SMS messages may be intercepted
or redirected, implementers of new systems should carefully consider alternative
authenticators.” [29].

Authentication or verification using OOB push notifications is considered a
safer practice. When the user authenticates or verifies a transaction, a push
notification is sent to the user’s mobile phone. The user approves the login
process or the transaction using an app installed on his or her mobile device.
In this process, the user can be required to give a PIN code or a token or a
cryptographic key can be readily stored on the users mobile phone. Even QR
codes containing encrypted information can be used together with mobile devices
to verify transactions [5, 1].

The potential problem with OOB verification is that today, people use the
internet more and more from their mobile devices, which means ”the second
channel” of communication is actually on the same device as the connection
between the client and the server [15]. This makes man-in-the-browser attacks
possible on the mobile device (so called man-in-the-mobile attack). The adver-
sary may also be able to subvert both the user’s PC and mobile device, in which
case OOB is defeated [6].



A Survey on Countermeasures against Man-in-the-browser Attacks 5

This problem can be alleviated by using separate devices with a display.
With this kind of external device, the user can verify and accept authentication
or transaction [24]. The risk of this device getting infected is much smaller than
the risk with the mobile device (which is used for many purposes, contains several
apps and is exposed to various websites), but the usability of a separate device
is worse, especially when one needs to be able to verify transactions anywhere.
Moreover, in some cases the devices have been vulnerable to attacks or reverse-
engineered completely [3].

OOB also has the problem of taking online banking out of internet, as one
needs a separate device for verification. In addition, a concern with many OOB
schemes that is not really addressed often enough in our opinion is the fact the
whole verification process may become a routine after a while; do the users really
pay attention to the data that should be verified (for example, do they always
carefully check that the name of the receiver or the account number displayed
on their phone is correct?). This concern could be solved with the systems that
make the user verify the transaction details by inputting them on both in the
browser and on the mobile device [25], but this makes the process significantly
more cumbersome.

Inspecting intercepted transactions securely A little bit different method
to prevent MitB that could still be considered as a type of out-of-band ver-
ification is to use a proxy (for example an USB device) to intercept a HTTP
request before it leaves the potentially infected PC. This way, the user can verify
that the transaction is still intact when it is sent over the network. The model
introduced by Rautila and Suomalainen [22], for example, allows the user the
inspect and verify transactions by intercepting them before they leave the ma-
chine. Similarly, the Zurich Trusted Information Channel [34] uses a USB device
to intercept critical transactions and lets the user review and verify them.

Creating a secondary channel using images Images can be used to avert
man-in-the-browser attacks to some extent. Goyal et al. [11] propose embedding
the data to be verified into a personal image that has been previously supplied
by the user. The challenge here is that the user has to securely deliver a set of
personal images to every trusted party he or she wants to communicate with. It is
also not completely guaranteed that a malware could not forge a text with these
images given enough different image-text combinations and applying machine
learning.

CAPTCHA can also be used to construct a secondary channel and defend
against MitB if we send a challenge that malware cannot understand, and use
a human as a computational resource [30]. However, today artificial intelligence
has been proven quite capable of solving different image-based tasks while many
humans might not be able to solve them easily.

Monitoring web page integrity Some man-in-the-browser attacks can stealthily
modify the DOM to reach the adversary’s objectives. For example, in a banking



6 Rauti

application the malware might add a fake input field on top of the real one.
The user will input a value to this fake field but the value in the invisible real
field, set by the malware, will be sent to the server. These kind of attacks can
be detected by monitoring the integrity of the DOM [19]. Toreini et al. [28]
present DOMtegrity, a cryptographic protocol protecting the integrity of a web
page. This kind of solution prevents many man-in-the-browser attacks. However,
MitB attacks can also be carried out by not touching the DOM, if the adversary
intercepts the network traffic and only changes some data values.

Client-side obfuscation Man-in-the-browser attacks can also be mitigated by
using obfuscation [19–21]. Obfuscation refers to the act of generating source or
machine code that is difficult to understand. If the JavaScript code and the DOM
structure of a web page is obfuscated (e.g. by changing names of functions and
variables, and reordering the code), it will become more difficult for the malicious
extension to modify the web page and the data values on the page. Obfuscation
should be different for each user session and it can even dynamically change on
the fly. As in the case of DOM integrity based solutions, this does not really
protect from the threat of network packet modification. The web application
could encrypt the data it sends over the network to alleviate this problem.

Hardened browser Hardening software refers to the process of securing a sys-
tem by limiting its attack surface. The browser can be hardened by running it
from an external tamper proof hardware device, and by making it capable of es-
tablishing a mutually authenticated TLS session with the server [23]. This way,
the malware cannot infect the browser and modify the transactions or web pages.
Different hardening techniques such as disallowing extensions, using a minimal
code build, applying anti-reverse engineering methods and employing obfusca-
tion techniques can be used to further harden the client software. The downside
of this approach is that to be totally tamper-proof, it needs hardware support. In
a similar manner, trusted execution technology can be used to confirm that an
authentic, non-infected client software is run on the system [13]. This approach
also requires hardware support. Nor et al. propose a remote attestation scheme
based on trusted execution technology in order to verify integrity of the client
platform [18].

Virtualization Technologies Virtualization technologies can also be used to
counter man-in-the-browser attacks. For example, the user could use a trusted
cloud-based environment, the integrity of which can be verified with trusted ex-
ecution technology, to carry out critical transactions. A virtualized environment
is also easy to monitor, we can for example monitor and analyze the memory and
network traffic of a virtual machine with machine learning techniques in order
to find out whether there is any abnormal behavior going on in the system [2].

Detect anomalies in binaries and program behavior Garćıa-Cervigon
and Llinàs [9] propose behavior-based detection of man-in-the-browser attacks



A Survey on Countermeasures against Man-in-the-browser Attacks 7

and analyze browser function calls in order to find profiles typical for infected
browser. Buescher et al. [4] introduce a solution that detects the malicious at-
tempts to manipulate (e.g. setting up hooks in network libraries) the browser’s
networking libraries. This approach is effective against many Trojans that steal
or modify data on network level. On the other hand, data manipulation on the
higher level (e.g. using DOM) still goes undetected.

Network traffic analysis Man-in-the-browser attacks can be detected by an-
alyzing network traffic. Gezer et al. [10] propose using machine learning and
looking at properties of network packets such as inter-arrival times and packet
lengths. This approach can be successfully used to identify abnormal behavior
patterns of a specific malware. The challenge of course is that different types of
malware have different profiles and a malicious program often keeps devolving
when new variants appear. Moreover, not all man-in-the-browser attacks need
to contact command and control center (for example, consider the program in
our earlier example that only changes the receiver’s bank account number in the
transaction) and do not really generate suspicious network traffic.

The findings of this survey are summarized in Table 1.

Table 1. The countermeasures for the MitB attack along with their pros and cons.

Countermeasure Pros Cons

Monitoring browser
extensions

- useful in countering MitB
extensions

- fine-gained rules are hard to
maintain

Out-of-band
verification

- prevents MitB when
used correctly

- mobile device can be infected
- transaction not always shown

Inspecting intercepted
transactions securely

- prevents MitB when
used correctly

- requires a separate device
- may become a routine

Creating a secondary
channel using images

- a creative idea that
mitigates MitB

- not very usable
- images might be forged

Monitoring web page
integrity

- mitigates all MitB attacks - monitor may be removed
or deceived

Client-side obfuscation - mitigates MitB attacks - obfuscation can be undone

Hardened browser - works when tamper-proof - not very usable

Virtualization
Technologies

- mitigates MitB
considerably

- attack might occur between
user’s machine and cloud

Monitor binaries
and program behavior

- useful against some attacks - may not work for extensions

Network traffic
analysis

- works when data is stolen - does not prevent modification



8 Rauti

5 Discussion

As the traditional security measures such anti-virus programs, firewalls and TLS
encryption are mostly ineffective against man-in-the-browser attacks, both the
academia and security companies have been trying to develop countermeasures
that would be usable and effective. There is still no silver bullet against man-
in-the-browser attacks, but the growing popularity of mobile devices and out-
of-band verification solutions have alleviated the problem. At the same time,
the growing number of malware on mobile platforms and the general trend of
using various applications on mobile environment as well as on a traditional PC
has put OOB verification in jeopardy. We have also noted that negligence of
users may be a problem when inspecting the correctness of transactions, as the
verification process may become routine, carried out almost automatically by
the user.

Today’s complex threat scenery requires advanced, multilayered countermea-
sures. It is worth noting that many of the countermeasures presented in the lit-
erature are orthogonal. In other words, they can often be used together without
any problems. For instance, monitoring the behavior of extensions and restrict-
ing their permissions, protecting the integrity of web pages, detecting hooks in
network libraries, anti-virus software, observing network traffic and out-of-band
verification could all be used together. Additionally, although we have been fo-
cusing on client-side solutions here (for the obvious reason man-in-the-browser
is a client-side threat), financial institutions and other service providers should
also look for abnormalities in transaction on the server side and notify the user
if necessary.

We believe man-in-the-browser attacks are just a part of more general trend:
when applications and users increasingly move to the web environment, threats
will also be there. In a sense, the web browser is becoming the new operating
system where applications are executed. Just as operating systems have pro-
tection mechanisms against malicious attacks, browsers should also be strongly
protected. Anti-virus vendors also need to better take notice what is happening
inside the web browsers and what kind of extensions are executed there. With
the co-operation of the academic community, security software vendors and ser-
vice providers, we hope to see practical, multilayered countermeasures against
man-in-the-browser attacks rolled out more effectively in the future.

6 Conclusion

We have presented a survey of countermeasures against man-in-the-browser at-
tacks. These attacks, introduced over ten years ago, are still a serious threat
to preserving users’ privacy online, safe online banking and other online trans-
actions. While no countermeasure seems to be completely foolproof (and still
usable) against man-in-the-browser attacks, combining some of these solutions
and more effectively enforcing them in real-world systems should greatly mitigate
this threat in the future.



A Survey on Countermeasures against Man-in-the-browser Attacks 9

References

1. Almeshekah, M.H., Atallah, M.J., Spafford, E.H.: Enhancing passwords security
using deceptive covert communication. In: IFIP International Information Security
and Privacy Conference, Springer (2015) 159–173

2. Biedermann, S., Ruppenthal, T., Katzenbeisser, S.: Data-centric phishing detec-
tion based on transparent virtualization technologies. In: 2014 Twelfth Annual
International Conference on Privacy, Security and Trust, IEEE (2014) 215–223

3. Blom, A., de Koning Gans, G., Poll, E., De Ruiter, J., Verdult, R.: Designed to
fail: A usb-connected reader for online banking. In: Nordic Conference on Secure
IT Systems, Springer (2012) 1–16

4. Buescher, A., Leder, F., Siebert, T.: Banksafe information stealer detection inside
the web browser. In: International Workshop on Recent Advances in Intrusion
Detection, Springer (2011) 262–280

5. Chow, Y.W., Susilo, W., Yang, G., Au, M.H., Wang, C.: Authentication and
transaction verification using qr codes with a mobile device. In: International
Conference on Security, Privacy and Anonymity in Computation, Communication
and Storage, Springer (2016) 437–451

6. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: On the (in)security of
mobile two-factor authentication. In Christin, N., Safavi-Naini, R., eds.: Financial
Cryptography and Data Security, Springer Berlin Heidelberg (2014) 365–383

7. Dougan, T., Curran, K.: Man in the browser attacks. International Journal of
Ambient Computing and Intelligence (IJACI) 4(1) (2012) 29–39

8. Entrust: Defeating man-in-the-browser malware – how to prevent the latest mal-
ware attacks against consumer and corporate banking. White paper. (2014)

9. Garcia-Cervigon, M., Llinàs, M.M.: Browser function calls modeling for banking
malware detection. In: 2012 7th International Conference on Risks and Security
of Internet and Systems (CRiSIS), IEEE (2012) 1–7

10. Gezer, A., Warner, G., Wilson, C., Shrestha, P.: A flow-based approach for trickbot
banking trojan detection. Computers & Security 84 (2019) 179–192

11. Goyal, P., Bansal, N., Gupta, N.: Averting man in the browser attack using user-
specific personal images. In: 2013 3rd IEEE International Advance Computing
Conference (IACC), IEEE (2013) 1283–1286

12. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser
extensions. In: 2011 IEEE symposium on security and privacy, IEEE (2011) 115–
130

13. Gühring, P.: Concepts against man-in-the-browser attacks. Technical Report.
(2006)

14. Jia, Y., Chen, Y., Dong, X., Saxena, P., Mao, J., Liang, Z.: Man-in-the-browser-
cache: Persisting https attacks via browser cache poisoning. computers & security
55 (2015) 62–80

15. Konoth, R.K., van der Veen, V., Bos, H.: How anywhere computing just killed your
phone-based two-factor authentication. In: International Conference on Financial
Cryptography and Data Security, Springer (2016) 405–421

16. Liu, L., Zhang, X., Yan, G., Chen, S., et al.: Chrome extensions: Threat analysis
and countermeasures. In: NDSS. (2012)

17. Marouf, S., Shehab, M.: Towards improving browser extension permission man-
agement and user awareness. In: 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom), IEEE
(2012) 695–702



10 Rauti

18. Nor, F.B.M., Jalil, K.A., et al.: An enhanced remote authentication scheme to
mitigate man-in-the-browser attacks. In: Proceedings Title: 2012 International
Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec),
IEEE (2012) 271–276

19. Rauti, S., Leppänen, V.: Man-in-the-browser attacks in modern web browsers. In:
Emerging Trends in ICT Security. Elsevier (2014) 469–480

20. Rauti, S., Leppänen, V.: Man-in-the-browser attacks in modern web browsers. In:
Emerging Trends in ICT Security. Elsevier (2014) 469–480

21. Rauti, S., Parisod, H., Aromaa, M., Salanterä, S., Hyrynsalmi, S., Lahtiranta, J.,
Smed, J., Leppänen, V.: A proxy-based security solution for web-based online
ehealth services. In: International Conference on Well-Being in the Information
Society, Springer (2014) 168–176

22. Rautila, M., Suomalainen, J.: Secure inspection of web transactions. International
Journal of Internet Technology and Secured Transactions 4(4) (2012) 253–271

23. Ronchi, C., Zakhidov, S.: Hardened client platforms for secure internet banking.
In: ISSE 2008 Securing Electronic Business Processes. Springer (2009) 367–379

24. SafeNet: Safenet etoken 3500. https://www.pronew.com.tw/download/doc/
eToken3500 PB (EN) web.pdf (2011)

25. Saisudheer, A., Tech, M.: Smart phone as software token for generating digital
signature code for signing in online banking transaction. International Journal of
Computer Engineering Science 3(12) (2013) 1–4

26. St̊ahlberg, M.: The trojan money spinner. In: Virus bulletin conference. Volume 4.
(2007)

27. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Enhancing web browser security
against malware extensions. Journal in Computer Virology 4(3) (2008) 179–195

28. Toreini, E., Shahandashti, S.F., Mehrnezhad, M., Hao, F.: Domtegrity: ensuring
web page integrity against malicious browser extensions. International Journal of
Information Security (2019) 1–14

29. Tsai, K.: Addressing new nist authentication guidelines
with symantec vip. https://www.symantec.com/connect/blogs/
addressing-new-nist-authentication-guidelines-symantec-vip (2016)

30. Tsuchiya, T., Fujita, M., Takahashi, K., Kato, T., Magata, F., Teshigawara, Y.,
Sasaki, R., Nishigaki, M.: Secure communication protocol between a human and
a bank server for preventing man-in-the-browser attacks. In: International Con-
ference on Human Aspects of Information Security, Privacy, and Trust, Springer
(2016) 77–88

31. Utakrit, N.: Review of browser extensions, a man-in-the-browser phishing tech-
niques targeting bank customers. (2009)

32. Van Acker, S., Nikiforakis, N., Desmet, L., Piessens, F., Joosen, W.: Monkey-in-
the-browser: malware and vulnerabilities in augmented browsing script markets.
In: Proceedings of the 9th ACM symposium on Information, computer and com-
munications security, ACM (2014) 525–530

33. Wang, L., Xiang, J., Jing, J., Zhang, L.: Towards fine-grained access control on
browser extensions. In: International Conference on Information Security Practice
and Experience, Springer (2012) 158–169

34. Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.: The
zurich trusted information channel–an efficient defence against man-in-the-middle
and malicious software attacks. In: International Conference on Trusted Comput-
ing, Springer (2008) 75–91

35. Zhang, P., He, Y., Chow, K.: Fraud track on secure electronic check system.
International Journal of Digital Crime and Forensics 10(2) (2018) 137–144


